
Subtask-Level Elastic Scheduling
Marion Sudvarg, Daisy Wang, Jeremy Buhler, Chris Gill

Department of Computer Science and Engineering
Washington University in St. Louis

(msudvarg, w.yanwang, jbuhler, cdgill)@wustl.edu

Buttazzo et al.’s elastic scheduling model allows task utiliza-
tions to be “compressed” to ensure schedulability atop limited
resources. Each task is assigned a range of acceptable utiliza-
tions and an “elastic constant” representing the relative adapt-
ability of its utilization. In this paper, we consider federated
scheduling, under which each high-utilization parallel task is
assigned dedicated processor cores. We propose a new model
of elastic workload compression for parallel DAG tasks that
assigns each subtask its own elastic constant and continuous
range of acceptable workloads. We show that the problem can
be solved offline as a mixed-integer quadratic program, or
online using a pseudo-polynomial dynamic programming algo-
rithm. We also consider joint core allocation and compression
of low-utilization sequential tasks and present a mixed-integer
linear program for optimal elastic compression of tasks under
partitioned EDF scheduling. We show empirical improvements
in schedulability over the prior work and present a case study
for the Fast Integrated Mobility Spectrometer (FIMS).

I. INTRODUCTION

Elastic real-time scheduling models provide a framework
in which task utilizations may be reduced to guarantee
schedulability despite limited resources. The original model
of Buttazzo et al. [1], [2] considers uniprocessor scheduling
of implicit-deadline task systems. Each task is assigned a
range of allowed utilizations, as well as an additional elasticity
parameter that “specifies the flexibility of the task to vary its
utilization” [1]. Ideally, each task is allowed to execute at its
maximum utilization. However, if this would cause the system
to become overloaded, each task’s utilization is “compressed”
proportionally to its elastic constant until the total utilization
no longer exceeds the schedulable bound of the system, or
until the task reaches its minimum serviceable utilization.

The growing prevalence of multicore CPUs, even in em-
bedded platforms, has enabled increasingly complex real-time
applications to exploit intra-task parallelism. Tasks that indi-
vidually require parallel execution on more than one processor
to meet their deadlines are found in autonomous vehicles [3],
computer vision systems [4], mobile robotics [5], hybrid
structural simulation [6], [7], and satellite telescopes [8]–[10].

This has inspired extensions of the elastic framework to
federated scheduling [11] of parallel real-time tasks, under
which each high-utilization parallel task (those with U > 1)
is allocated dedicated processor cores in sufficient number to
guarantee schedulability. In prior work by Orr et al. [12], if
the number of allocated cores exceeds those available in the
system, parallel task utilizations are compressed by decreasing
their workloads over a continuous range until the demand for
processors can be met. Utilizations thus assigned satisfy a

reformulation of the quadratic optimization problem presented
by Chantem et al. [13], [14] that is solved by Buttazzo’s
original elastic scheduling model [1], [2].

Limitations of Prior Work: The proposed approach in [12]
has three key limitations. First, it decreases the task’s compu-
tational demand as a whole, without considering the impact on
each subtask. The ability of each subtask to vary its utilization
— and the resulting impact on quality of outcome (e.g.,
control performance, prediction accuracy, etc.) — should be
considered individually to maximize overall quality within the
resource constraints [15]–[19]. Second, it allocates processor
cores per the methodology in [11], which considers each par-
allel task’s total workload, deadline, and span. As it decreases
task workloads, the model in [12] holds the span constant.
However, span may also decrease with subtask workloads,
allowing schedulability with less overall compression. Third, it
only considers core allocation to high-utilization parallel tasks.
In fact, under the federated scheduling model in [11], low-
utilization tasks are scheduled concurrently on any remaining
cores not allocated to the high-utilization tasks. Orr et al.’s
model [12] compresses parallel tasks given a number of
available cores, only suggesting as an aside that low-utilization
tasks can be compressed if there are cores remaining. However,
jointly compressing all tasks may change the numbers of cores
separately allocated to high- and low-utilization tasks.

Contributions of This Work: To address these limitations of
the current state of the art, we propose a model of subtask-level
elastic scheduling. To capture the semantics of individually
compressing subtask workloads, it assigns to each subtask an
elasticity parameter and continuous range of acceptable work-
loads. It adapts the quadratic objective for elastic scheduling
from Chantem et al. [13], [14] to this new model.

It also demonstrates solver-based methods for assigning
subtask workloads. The model can be expressed and solved
as a mixed-integer quadratic program (MIQP), though it is
nontrivial to express the schedulability constraint as a function
of subtask workloads because their assignment affects the
task’s span. We propose and analyze two different methods
to construct the MIQP, as well as a dynamic programming
algorithm for jointly compressing multiple tasks.

Finally, it jointly compresses low-utilization tasks. By con-
sidering them in aggregate, the model captures the objective
value associated with compressing low-utilization tasks onto
different numbers of cores, then folds these values into the
dynamic program to allocate cores to both high- and low-
utilization tasks. We demonstrate this concretely in the context
of fluid [20] and partitioned EDF scheduling [21]. For the
latter, we present a novel mixed-integer linear program (MILP)



formulation for optimal elastic scheduling of sequential tasks.
Empirical Results: We implement the MIQPs and MILP in
Gurobi [22], an off-the-shelf constraint-programming solver.
In our evaluation, solving the MIQP for individual parallel
tasks with up to 50 subtasks took under 42ms. By solving mul-
tiple MIQPs offline, our pseudo-polynomial algorithm enabled
online core allocation and workload compression in under
60ms for 10 tasks with up to 20 subtasks each. Moreover, for
the parallel tasks considered, we demonstrate that our model
may achieve schedulability on systems with only 41% of the
cores required by the prior model of Orr et al. [12].

We also apply our approach to a real-time atmospheric
aerosol monitoring pipeline [23], [24] for the Fast Integrated
Mobility Spectrometer (FIMS). We re-implement its image
processing task that detects and sizes aerosol particles to
parallelize over multiple image segments. We assign elastic
constants based on average particle densities within each
segment. This allows us to compress the subtask workloads to
remain schedulable even on future drone-based deployments
where reduced particle resident times require shorter periods.

II. BACKGROUND

A. Uniprocessor, Implicit-Deadline Elastic Scheduling

Buttazzo’s elastic recurrent real-time workload model [1],
[2] provides a framework for managing overload by reducing
(“compressing”) the utilizations of individual tasks until the
total no longer exceeds the schedulable bound. It characterizes
each task τi=(Ci, U

min
i , Umax

i , Ui, Ei) by five non-negative
parameters: Ci is the task’s worst-case execution time; Umax

i is
its maximum utilization, i.e., its nominal value when executing
at the desired service level in an uncompressed state; Umin

i is
its minimum utilization, i.e., a bound on the amount its service
can degrade; Ui is the task’s assigned utilization, constrained
to Umin

i ≤ Ui ≤ Umax
i ; and Ei is an elastic constant, repre-

senting “the flexibility of the task to vary its utilization” [1].
A task system Γ = {τ1, . . . , τn} has a total uncompressed

utilization Umax
SUM =

∑n
i=1 U

max
i and a desired utilization UD

representing the utilization bound given by the scheduling
algorithm in use. In the event of system overload, i.e., if
Umax

SUM > UD, the elastic model compresses each task’s uti-
lization such that it is reduced from its desired maximum
proportionally to the task’s elasticity parameter, subject to the
constraint that it remains no less than the specified minimum.
Compression is realized by adjusting each task’s period Ti

according to its new utilization, i.e., Ti = Ci/Ui.
Chantem et al. [13], [14] demonstrated that utilizations thus

assigned satisfy the following quadratic optimization problem:

min
Ui

n∑
i=1

1

Ei
(Umax

i − Ui)
2 (1a)

s.t.
n∑

i=1

Ui ≤ UD (1b)

∀i, Umin
i ≤ Ui ≤ Umax

i . (1c)

This supports elasticity in other task models with schedu-
lability tests that do not rely strictly on a utilization bound,
including federated scheduling of parallel real-time tasks [11].

B. Elastic Frameworks for Federated Scheduling

The federated scheduling model of Li et al. [11] deals with
systems of parallel implicit-deadline tasks. Each task τi con-
sists of a set of subtasks τi,j , each characterized by a workload
ci,j representing its worst-case execution time. Subtasks may
run in parallel, except as constrained by a precedence relation:
if τi,a ≺ τi,b, then τi,a must fully complete its execution before
τi,b is scheduled. The partial-ordering of precedence over
subtask execution that describes task execution gives rise to
a standard directed acyclic graph (DAG) representation with
a collection of vertices vi,j corresponding to subtasks τi,j .
A directed edge from vertex vi,a to vi,b exists if and only if
τi,a ≺ τi,b and there is no τi,c for which τi,a ≺ τi,c ≺ τi,b, i.e.,
τi,b directly succeeds τi,a.

Each high-utilization parallel task τi is allocated mi dedi-
cated processor cores, where

mi =

⌈
Ci − Li

Di − Li

⌉
. (2)

Here, Ci =
∑

j ci,j represents the task’s total workload (DAG
volume). Li is the task’s span, i.e., the DAG’s critical path
length (weighted by subtask execution time). Di is the task’s
deadline; for implicit-deadline tasks, this equals the period Ti.

In [25], Orr et al. extended the elastic framework to the fed-
erated scheduling model. If the total processor cores allocated
exceed the number available, each high-utilization parallel task
has its utilization compressed until demand is met. Rather
than a simple utilization bound, Eqn. 2 implies the following
schedulability condition:

n∑
i=1

⌈
Ci − Li

Di − Li

⌉
≤ m. (3)

where m is the total number of processor cores available. Task
utilizations are assigned according to Eqn. 1, with the original
schedulability condition (Eqn. 1b) replaced by Eqn. 3.

In [12], Orr et al. extended their approach to
computationally-elastic tasks, allowing parallel workloads to
be adjusted over a continuous range: a task with period Ti

would have its workload assigned as Ci = Ti · Ui. This may
be realized, for example, by reducing the quantity of input
data to process or by forcing an iterative anytime algorithm
to terminate early [26]. The span Li is held constant.

This work addresses limitations of that model. In particular,
we consider how reducing the workload of each individual
subtask impacts result quality and task span. We also consider
the joint compression of low-utilization tasks. The next section
details these limitations and motivates our work.

III. MOTIVATION AND PROBLEM STATEMENTS

A. Subtask-Level Elastic Scheduling

Subtask-Level Workload Compression: In a computationally-
elastic task, the workloads of individual subtasks may be



c=5

c=3

c=8

c=2

C=18
L=13

(a) Uncompressed workload

c=1

c=3

c=8

c=2

C=14
L=13

(b) No change to span

c=5

c=3

c=4

c=2

C=14
L=10

(c) Span compressed

Fig. 1: Critical path may change depending on which subtask workloads are compressed.

able to adapt in different ways. Examples include anytime
workloads, which may iteratively refine the result to achieve
greater precision. If their execution time budget is exhausted,
the current result is used. Others support discrete execution
modes that can be selected prior to execution, which may
correspond to different algorithmic techniques [19] or vary-
ing degrees of numerical precision [17], [27], [28]. At fine
enough granularity, discrete modes can be approximated as
a continuous state space, e.g., the proportion of input data
selected from a large set for processing [19]. Furthermore, as
we demonstrate with our case study in §VIII, a subtask may
represent some optional execution to improve the result. If
the subtask’s execution times form a wide distribution, e.g.,
due to dependence on the number of features present in an
image, then selecting an execution time from a continuous
range increases the likelihood that it will be able to complete.

Moreover, the workload assigned to each individual subtask
may uniquely impact result quality. For example, in au-
tonomous vehicles, AutoE2E [18], [29] adjusts end-to-end task
execution to maintain schedulability in open and unpredictable
environments. It considers the relative importance of each
subtask, both from the perspective of driver preference and
control outcome. For LiDAR object detection, fine-grained
time and accuracy tradeoffs in the PointPillars [30] encoder
pipeline are exploited in [17] to enable adaptive execution in
response to dynamic deadlines in an open environment. The
authors analyze the execution time and corresponding accuracy
associated with different levels of computational precision in
the DAG’s subtasks. For prompt gamma-ray burst localization,
the authors of [19] model the localization pipeline as a highly-
parallel fork-join task, then parameterize its workloads along
continuous degrees of freedom, characterizing the impact on
localization accuracy of compressing each pipeline stage.

Each of these applications enables adaptive real-time execu-
tion based on the importance of each subtask. However, there
is as yet no model that extends elastic scheduling to consider
individual subtasks for parallel DAG tasks in general.
Considering Task Span: The model in [12] for federated
scheduling of computationally-elastic tasks holds the span Li

of each task τi constant while compressing workloads Ci.
Depending on how the new workload assignment Ci is to be
realized, i.e., which subtask workloads ci,j are to be reduced,
the value Li may also decrease, as Fig. 1 illustrates. Without
accounting for this, the model may be pessimistic in resource
allocation and may over-compress task workloads.

Example 1. Consider a task with parameters Cmax
i = 10,

Li = 4, and Di = 6 to be scheduled on only 2 processor cores.
If Li is held constant, the task’s workload would have to be
decreased to Ci = 8 to satisfy Eqn. 2. But the workload needs
to only be reduced by 1 unit along its critical path (Ci = 9
and Li = 3) to be schedulable.

The Subtask-Level Elastic Workload Model: To fill the
above-mentioned gaps, we propose a model of subtask-level
computational-elasticity where each subtask τi,j is assigned a
continuous range of allowed execution times [cmin

i,j , cmax
i,j ] and

an elastic constant Ei,j . This elasticity parameter, similarly to
the model of Buttazzo et al. [1], [2], represents the adaptability
of the subtask’s workload, e.g., based on its relative importance
to result outcome (a more important subtask would be less
elastic). Subtask workloads ci,j are then selected to satisfy a
modified version of the quadratic optimization of Chantem et
al. [13], [14] in Eqn. 1 so as to (4a) minimize the (weighted)
deviations of individual subtask utilizations from their desired
values, within (4b) the schedulability constraints that arise
from assigning each parallel task its own dedicated processor
cores according to Eqn. 2, and (4c) constraints on the range
of allowed execution times for each subtask.

min
{ci,j}

∑
τi,j

1

Ei,jT 2
i

(
cmax
i,j − ci,j

)2
(4a)

s.t.
n∑

i=1

⌈
Ci − Li({ci,j})
Ti − Li({ci,j})

⌉
≤ m (4b)

∀i,j , cmin
i,j ≤ ci,j ≤ cmax

i,j . (4c)

B. Joint Compression of Low-Utilization Tasks

Motivation: Prior models for elastic scheduling of parallel
tasks in [12], [25], [27] do not address compression of
low-utilization (i.e., sequential, non-DAG) elastic tasks. They
assume a fixed allocation of processor cores to high-utilization
parallel tasks, mentioning as an aside that sequential tasks can
be compressed per Buttazzo’s original algorithm in [1], [2]
to be schedule on any remaining processors. However, the
semantics of elastic scheduling suggest that, as the allocation
of cores to each task may change, so too may the allocation
of cores between high- and low-utilization tasks.

Example 2. Consider a system with m = 4 processor cores on
which the following implicit-deadline tasks must be scheduled:

1) τ1 = (C1 = 5, T1 = 10), a sequential task.
2) τ2 = (C2 = 3, T2 = 8), a sequential task.
3) τ3 = (C3 = 4, T3 = 7), a sequential task.
4) τ4 = (C4 = 30, L4 = 10, T4 = 15), a parallel task.



The total utilization of the sequential tasks is ∼1.45, and
they therefore require 2 cores, but task τ4 alone requires⌈
30−10
15−10

⌉
= 4 cores per Eqn. 2. If we compress its workload

by 5 units along its span, τ4 is schedulable on the remaining
2 cores:

⌈
25−5
15−5

⌉
= 2. However, if we compress the utilizations

of the sequential tasks so that they occupy a single core, then
the workload and span of τ4 need only be to reduced by 5/3.

In §VI of this paper, we present methods for joint compres-
sion of both high- and low-utilization tasks that allow dynamic
allocation of processor cores to either set.

IV. MIQP FOR SUBTASK-LEVEL ELASTICITY

The optimization problem in Eqn. 4 is naturally expressed
as a mixed-integer quadratic program (MIQP), allowing it to
be solved using one of many available off-the-shelf solvers.

A. Constructing the MIQP

We demonstrate an approach to constructing the problem
for Gurobi [22], a mathematical optimization tool that solves
MIQPs. It supports both integer and continuous variables,
and constraints and objectives can be linear or quadratic
expressions. Though we have chosen to focus on Gurobi, this
approach generalizes to other quadratic solvers.

1) Subtask Workloads: For each subtask τi,j , define contin-
uous variables ci,j representing the workload assigned to the
subtask, and constrained as in Eqn. 4c:

cmin
i,j ≤ ci,j ≤ cmax

i,j . (5)

2) Objective: Our goal is to find an assignment of values
to each variable ci,j that minimizes Eqn. 4a. Because our
objective is to minimize this expression, and not to solve it
directly, we can simplify by removing constant terms. Thus,
our MIQP can be constructed so as to:

minimize
∑
τi,j

(
1

Ei,jT 2
i

· c2i,j −
2cmax

i,j

Ei,jT 2
i

· ci,j
)
. (6)

3) Span: For each task τi, define a non-negative continuous
variable Li representing its span. It is required that Li does not
exceed Ti for τi to be schedulable, as Di = Ti. Furthermore,
a value of Li exceeding Ti might result in the LHS of
Eqn. 3 taking a negative value, which would be an inconsistent
interpretation of the condition, resulting in an invalid solution.
To enforce this, we add constraints of the form

Li ≤ Ti. (7)

Other variables and constraints to enforce the intended inter-
pretation of each variable Li as the span of τi are discussed
further in §IV-B and §IV-C.

4) Processor Core Allocations: For each task τi, define
a non-negative integer variable mi representing the number
of cores allocated to the task, which should be sufficient to
guarantee schedulability according to Eqn. 2. To enforce this
intended interpretation, we add constraints of the form

mi ≥
∑

j ci,j − Li

Ti − Li
.

S T

Fig. 2: Left: a DAG with two source vertices and three sink vertices.
Right: unique source and sink vertices are added; if these both have
0 workload, the corresponding task’s execution is unchanged.

Since mi is specified to be an integer variable, it will respect
the ceiling operator that appears in Eqn. 2. Rearranging, this
yields quadratic constraints of the form:

Li + Ti·mi ≥ mi·Li +
∑
j

ci,j . (8)

With the above constraint on span (Eqn. 7), this will force Li

to remain strictly less than Ti, since mi → ∞ as Li → T−
i .

5) Total Processor Cores: The total allocation of cores
must not exceed m, the number available. To enforce this,
we add the additional constraint∑

i

mi ≤ m. (9)

B. Task Span: A Constraint for Each Path

We now return to the problem of representing a DAG task’s
span in our MIQP. For a task τi, the variable Li represents its
span, which can be expressed as the maximum workload

Li = max
pi,k

 ∑
vi,j∈pi,k

ci,j


over the set of paths {pi,k} between pairs of vertices in the
task’s representative DAG. To simplify this, we consider tasks
with DAGs having a single source vertex s and sink vertex
t. Any task DAG , even those that are not weakly-connected,
can be represented as a weakly-connected DAG with a single
source and sink with the following construction. 1 Add a
vertex vi,s with execution time ci,s = 0 and connect it with
edges to all vertices in the DAG that do not already have
incoming edges. Similarly, 2 add a 0-workload vertex vi,t,
connected with edges from all vertices that do not already have
outgoing edges. This is illustrated in Fig. 2.

Because of the restriction that vi,a is connected by an edge
to vi,b only if τi,b directly succeeds τi,a, every path from s to
t might form the critical path, depending on the assignment
of subtask execution times. Therefore, for each path pi,k from
s to t, we add constraints of the form

Li ≥
∑

vi,j∈pi,k

ci,j . (10)

Number of Constraints: The inequality in Eqn. 10 represents
a constraint for every path from each task DAG’s source vertex
to its sink. Therefore the number of these constraints can be
expressed as the number of maximal paths through the DAG.



S T…

Fig. 3: A DAG with n vertices and 3(n−2)/3 maximal paths, each
of which might be the critical path.

It is shown in [31] that for a DAG without shortcuts1 having
n = 3k vertices for k ∈ N, the maximum number of maximal
paths is 3k. For our construction that adds a unique source
and sink vertex, there thus can be up to 3(n−2)/3 constraints
for the DAG shown in Fig. 3. We analyze the number of these
constraints for randomly-generated task DAGs in §VII-A.

C. Task Span: A Polynomial Number of Constraints

To provide a smaller bound on the number of constraints in
our MIQP, we propose an alternative method for enforcing the
intended interpretation of the Li variables. Though giving rise
to a different representation of the problem, this method still
semantically captures the optimization problem (4). To do so,
we introduce a term li,j representing the subtask span of τi,j .

Definition 1 (Subtask Span [32]). The span li,j of subtask
τi,j in task τi represents the length of the longest path —
weighted by the execution time of each subtask along the
path — originating at the corresponding vertex vi,j of the
task’s DAG representation and including vi,j itself. This can
be expressed by the following recurrence:

li,j = ci,j + max
vi,k: vi,j≺vi,k

{li,k} (11)

For a task τi with a single source vertex s, this implies
that Li = li,s. From the above recurrence in Eqn. 11, we can
enforce the intended interpretation of each span variable Li by
the following construction. For each subtask τi,j that does not
correspond to a sink vertex in the task DAG, add a variable
li,j representing its span. The span of the source vertex s is
already represented by the variable Li. Then for each such
variable li,j , add the following constraint for every non-sink
subtask τi,k that directly succeeds τi,j :

li,j ≥ ci,j + li,k. (12)

For every subtask τi,k that directly succeeds τi,j and that
does correspond to a sink vertex in the task DAG, add the
following constraint instead:

li,j ≥ ci,j + ci,k. (13)

Number of Constraints: With this method, our MIQP has an
additional linear constraint with 3 terms for every edge of
the DAG. The maximum number of edges for a DAG with k

vertices is
⌊
k2

4

⌋
, which follows from Turán’s theorem [33].

1An edge is a shortcut if the vertices it connects are connected by an
alternate path. Task DAGs have no shortcuts, since vertices are only connected
by an edge if one directly succeeds the other.

V. JOINT COMPRESSION WITH DYNAMIC PROGRAMMING

We now present an alternative approach to the problem of
workload compression using an MIQP. Rather than construct-
ing a joint problem over all tasks, the idea is to construct an
MIQP for each task individually, then solve to find the opti-
mal assignment of subtask workloads (and the corresponding
objective value) for each possible core allocation. This defines
a set of discrete states for each task corresponding to different
core allocations; the optimal assignment overall can then be
determined using dynamic programming.

A. Motivation

Compressing task workloads individually, then solving the
joint problem with dynamic programming (DP) has three
advantages over the single joint MIQP presented in §IV.
Faster Solution Search: Though we cannot make theoretical
guarantees about improved complexity, we demonstrate em-
pirically in §VII-C that the time to solve a single joint MIQP
increases rapidly with the number of tasks. Solving multiple
MIQPs for each individual task, then constructing a dynamic
program to allocate cores optimally to all tasks, may be faster.
Efficient Admission Control: Buttazzo’s elastic scheduling
model in [1], [2] is not simply intended for adjusting a prede-
fined set of tasks to be schedulable on a resource-constrained
system. Its primary use-case is in dynamic and open systems
where the set of active tasks may change, and therefore an
efficient approach to admission control is desirable.

Given that task parameters (control-flow DAGs, execution
times, deadlines, etc.) are assumed to be characterized off-
line, it is also reasonable that discrete states corresponding
to optimal subtask-level workload compression for different
core allocations also could be computed offline. Then, when
configuring the system, or during admission control, only the
pseudo-polynomial DP problem needs to be solved.
Joint Compression of Low-Utilization Tasks: Finally, as we
show in the next section, a DP-based approach also allows us
to address low-utilization sequential tasks to which cores must
be allocated concurrently with high-utilization parallel tasks.

B. Method

Our DP-based approach is realised in two steps: 1 Con-
struct and solve an MIQP for each task individually over every
possible core allocation. Then 2 construct an instance of a
multiple-choice knapsack problem to allocate cores to each
task such that (a) the objective in Eqn. 4a is minimized while
(b) the total allocation of cores does not exceed the number
available. This approach is outlined in Alg. 1, which takes a
set Γ of n tasks to be scheduled on m processor cores.

1) Constructing and Solving MIQPs: For each individual
task τi, we compute the minimum mmin

i and maximum mmax
i

number of cores that it can be allocated. For any allocation
less than the minimum, τi is not guaranteed to be schedulable;
any allocation greater than the maximum is wasted capacity.
Then for each possible core allocation m∗ in the range
[mmin

i ,mmax
i −1], we construct and solve an MIQP according

to the procedure in §IV for just the individual task.



The MIQP may be simplified by removing the variable mi

that represents the number of cores assigned to task τi and
replacing it instead with a constant m = m∗. In doing so, the
constraint taking the form of Eqn. 8 becomes linear instead of
quadratic, and the constraint of Eqn. 9 is removed.

Algorithm 1: COMPRESS-DP(Γ,m)

1 Input: A set Γ of n high-utilization parallel tasks, m available
processor cores

2 Output: A set {ci,j} of subtask workload assignments

3 ▷ Find optimal state for each core allocation
4 forall τi ∈ Γ do
5 Cmin

i ←
∑

j c
min
i,j , Cmax

i ←
∑

j c
max
i,j

6 Lmin
i ← Compute span according to cmin

i,j values
7 Lmax

i ← Compute span according to cmax
i,j values

8 mmin
i ←

⌈
Cmin

i −Lmin
i

Ti−Lmin
i

⌉
, mmax

i ←
⌈
Cmax

i −Lmax
i

Ti−Lmax
i

⌉
9 forall mi,k ← mmin

i ..(mmax
i −1) do

10 Construct and solve an MIQP to obtain optimal subtask
workloads and corresponding objective value Oi,k to
compress the single task τi to execute on mi,k cores.

11 ▷ Find optimal joint state for m cores
12 if

∑
i m

max
i ≤ m then return No compression needed

13 if
∑

i m
min
i > m then return Not schedulable

14 ▷ Adapted multiple-choice knapsack
15 DP [0..m][0..n]▷ Table to track optimal solution.
16 DP [0][∗].O ←∞, DP [∗][0].O ←∞
17 for m∗ ← 1..m do
18 for i← 1..n do
19 MIN ←∞ ▷ Minimum objective so far.
20 ALLOC ← −1 ▷ Core allocation to τi.

21 ▷ Possible compression states for τi,
corresponding to valid core assignments

22 for mi,k ← mmin
i ..min(mmax

i ,m∗) do
23 if i = 1 then
24 ▷ First task, allocate cores.
25 MIN ← Oi,k

26 ALLOC ← mi,k

27 else if DP [m∗ −mi,k][i− 1].O +Oi,k < MIN then
28 ▷ Re-assigning mi,k cores to τi

reduces objective function.
29 MIN ← DP [m∗ −mi,k][i− 1].O +Oi,k

30 ALLOC ← mi,k

31 if ALLOC > −1 then
32 ▷ Update based on re-allocation.
33 DP [m∗][i].M ← DP [m∗ − ALLOC][i− 1].M
34 Insert ALLOC into DP [m∗][i].M
35 DP [m∗][i].O = MIN

36 else
37 ▷ Otherwise, use previous allocation.
38 DP [m∗][i] = DP [m∗ − 1][i]

39 return DP [m][n]

Solving for each value of m∗ in this way gives us a set of
optimal subtask workload assignments and objective function
values for each allocation; for m∗ = mmax

i , every subtask
workload is assigned as ci,j = cmax

i,j and the task’s contribution
to the objective function in Eqn. 4a is 0.

2) Joint Allocation as a Multiple-Choice Knapsack Prob-
lem: Lines 4–10 of Alg. 1 give us, for each task τi, a group
of pairs of weight (processor core allocation, mi,k) and cost
(the minimum value taken by Eqn. 4a, Oi,k) values for each

mi,k ∈ [mmin
i ,mmax

i ]. The goal is to select a pair from each
group to minimize total cost, while preventing the total weight
from exceeding the number of available cores m.

The above problem is similar to multiple-choice knapsack,
in which is given a set of disjoint groups of items with weights
and profits, and the problem is to select exactly one item
from each group to maximize total profit without exceeding a
given total weight bound. It is shown in [27] that the pseudo-
polynomial DP-based algorithm presented in [34] for multiple-
choice knapsack can be adapted instead to minimize total item
cost, and is therefore applicable to our allocation problem.

Our implementation of this algorithm builds a two-
dimensional table DP where DP [m∗][i] gives the optimal
solution after considering the first i≤n tasks on m∗≤m cores.
Each entry in the table is a pair ⟨M,O⟩ where M is a set that
tracks the number of cores allocated to those i tasks, and O is
the corresponding minimum objective function value. Entries
satisfy the following recurrence:

DP [m∗][i].O = min
(
DP [m∗ − 1][i].O,

min
k

{DP [m∗ −mi,k][i− 1].O +Oi,k}
)

The first term is the entry corresponding to assigning the first i
tasks on m∗−1 cores, i.e., the case where adding an additional
core does not decrease the cost. The second term represents
the minimum cumulative cost of assigning mi,k cores to task
τi and the remaining m∗ −mi,k cores to the previous tasks.

Lines 14–38 of Alg. 1 use dynamic programming to iter-
atively construct the table so DP [m∗ − 1][i] and all entries
DP [m∗−mi,k][i−1] are already populated when DP [m∗][i]
is computed. The procedure iterates over cores, then tasks,
considering scheduling the first i tasks on m∗ CPUs. For each
possible assignment of cores mi,k ≤ m∗ to τi (bounded by the
minimum and maximum core assignments mmin

i and mmax
i

due to the constraints on the subtask workloads of τi), the
algorithm checks whether re-allocating mi,k cores to task τi
improves the result (i.e., decreases the tracking variable MIN).
If an improved allocation is found, then the entry of the DP
table is updated with the objective (cost) and corresponding
core allocation. Otherwise, it is updated to match the best
allocation over the previously-considered m∗ − 1 cores.
Runtime Complexity and Admission Control: While we
cannot make guarantees about the time to solve each MIQP, the
DP portion of Alg. 1 is pseudopolynomial in n and m. There
are m CPUs to allocate (line 17) to n tasks (line 18). For each
task τi, we consider allocations from mmin

i to mmax
i , stopping

if the currently-considered allocation m∗ is reached (line 19);
this bounds the number of iterations of the inner for loop to m,
since m∗≤m. The total worst-case running time is therefore
O(n·m2). As justified in §V-A, if the optimal set of task
workloads for each core allocation is obtained offline when a
task’s other parameters are characterized, then admission of
a new task to an already-compressed system can be achieved
by executing lines 14–32 of the algorithm, enabling admission
control in pseudo-polynomial time. We evaluate this in the
context of synthetically-generated parallel tasks in §VII-C.



VI. JOINTLY COMPRESSING LOW-UTILIZATION TASKS

Our DP-based approach of the previous section also en-
ables joint scheduling of low-utilization sequential tasks. We
characterize such tasks according to Buttazzo’s original elastic
scheduling model, with utilizations compressed proportionally
to their elastic constants [1], [2]. The key idea is that we can
consider mmin

LO and mmax
LO as the number of cores necessary

to schedule the complete set ΓLO of low-utilization tasks
when fully compressed and uncompressed, respectively. For
every m∗ ∈ [mmin

LO ,mmax
LO − 1], we can quantify the amount of

compression necessary to achieve schedulability on m∗ cores.
By then solving for the corresponding objective function value
in Eqn. 4a for the compressed ΓLO, we obtain a set of discrete
core assignments and costs. This allows the complete set ΓLO

to be integrated into the DP-based algorithm as if it were a
single high-utilization parallel task.

Obtaining values mmin
LO and mmax

LO — and the amount of
compression needed to schedule on m∗ cores — depends on
the scheduling algorithm. Though complete coverage of mul-
tiprocessor scheduling is out of scope, we outline approaches
for fluid and partitioned EDF scheduling, extending the ap-
proaches in [35], [36] for multiprocessor elastic scheduling.

A. Fluid Scheduling
Under fluid scheduling, each individual task τi is assigned

a fraction fi of a processor at each instant in time. This is
a convenient abstraction that considers a task set Γ to be
schedulable on m cores so long as (a) the total utilization∑

i Ui of Γ does not exceed m, and (b) the individual
utilization Ui of each task τi does not exceed 1 [20].

For low-utilization tasks, condition (b) is automatically
satisfied. We can therefore obtain mmin

LO and mmax
LO as

mmin
LO =

⌈∑
i

Umin
i

⌉
mmax

LO =

⌈∑
i

Umax
i

⌉
, (14)

where Umin
i = Cmin

i /Ti or Ci/T
max
i (and similarly for Umax

i ),
depending on whether τi is computationally-elastic or rate-
elastic. Then for m∗ ∈ [mmin

LO ,mmax
LO − 1], we assign values

Ui to each task τi that satisfy Buttazzo’s elastic model [1], [2]
with the desired utilization UD equal to m∗.

The total time — beyond the O((nHI +1)·m2) to solve the
DP problem jointly with nHI high-utilization parallel tasks —
can be kept to a minimum by using the algorithm of Sudvarg
et al. in [36], [37]. Computing mmin

LO and mmax
LO can be done in

time linear in nLO, the number of tasks in ΓLO. Compressing to
m∗ cores can be done in time O(nLO · log(nLO)). However, the
quasilinear time is due to an initial step of obtaining a sorted
list of tasks; the sort order does not depend on the desired
utilization UD. Therefore, this only needs to be done once.
The remainder of [37, Alg. 1] takes time O(nLO). Thus, the
worst-case running time is

O(nLO · log(nLO) +m·nLO)

which accounts for the initial sort, followed by at most m
linear-time invocations of [37, Alg. 1] and computations of
Eqn. 4a, since we can stop when m∗ exceeds m.

B. Partitioned EDF Scheduling

While fluid scheduling is a convenient abstraction, and
implementations exist to approximate it [38], it often remains
impractical in real systems [35]. A more applicable paradigm
is partitioned scheduling, where tasks are distributed to proces-
sors a priori, then scheduled with other tasks on that processor
according to a common approach (e.g., fixed-priority or EDF).
An optimal distribution for partitioned EDF is equivalent to
bin-packing, and is therefore NP-hard in the strong sense,
but approximation algorithms exist that provide guaranteed
schedulability if a utilization bound is not exceeded [21]. For
example, a set of low-utilization tasks is EDF-schedulable on
m∗ cores using first-fit or best-fit partitioning if their total
utilization does not exceed (m∗ + 1)/2. It is therefore straight-
forward to adapt the method proposed for fluid scheduling to
partitioned EDF by changing the utilization bound.

However, this bound tends to be pessimistic [36]. An alter-
native heuristic-based method is explored in [35], [36]. We in-
stead propose an exact solution based on a mixed-integer linear
program (MILP). The MILP is solved for each possible core
assignment m∗ ∈ [mmin

LO ,mmax
LO − 1], where mmin

LO is computed
as per fluid scheduling (representing the absolute lower bound
on the number of cores for which a feasible partition might be
found under maximum compression) and from the worst-case
utilization bound, mmax

LO = ⌈2
∑

i(U
max
i )− 1⌉.

Constructing the MILP: From [39], there is a value λ repre-
senting the amount of compression applied to the task system.
Since every sequential task is compressed proportionally to its
elasticity, we can express each task’s utilization Ui as

Ui(λ) = max
(
Umax
i − λEi, U

min
i

)
. (15)

The goal, then, is to find the minimum value of λ for which
the set ΓLO of low-utilization tasks is schedulable on m cores.

1) Task Utilizations: For each low-utilization task τi, define
a continuous variable Ui representing its utilization:

Umin
i ≤ Ui ≤ Umax

i . (16)

2) Compression: We define a real-valued variable λ inter-
preted as above. To enforce this, we specify the constraint:

0 ≤ λ ≤ λmax. (17)

Here, λmax represents the value of λ for which every task’s
utilization Ui reaches its minimum Umin

i . This is the maximum
compression that may be applied, after which utilizations no
longer change. From Eqn. 15, this can be computed as:

λmax = max
τi∈ΓLO

(
Umax
i − Umin

i

Ei

)
.

To enforce the utilization and compression relationship in
Eqn. 15, for each task τi we add a constraint of the form

Ui ≥ Umax
i − Eiλ. (18)

Then the objective is to

minimize λ. (19)



A

B

C
Fig. 4: Removing shortcut edges.

3) Schedulability: A set of tasks is partitioned EDF schedu-
lable on m cores if and only if there exists a partition of tasks
into m sets such that the total utilization of tasks in each set
does not exceed 1. For each task τi and each core k ∈ 1..m, we
define zero-one variables xi,k with the intended interpretation
that xi,k takes the value 1 if task τi executes on core k, and
0 otherwise. So that each task τi is assigned to exactly one
core, we add constraints of the form

m∑
k=1

xi,k = 1. (20)

To enforce the schedulability condition, we require that for
every core k,

∑
i Ui · xi,k ≤ 1. To avoid quadratic constraints,

we define a large constant value M and for each variable xi,k

we define a corresponding variable zi,k constrained as

zi,k ≥ 0, (21)

zi,k ≥ Ui +M · (xi,k − 1). (22)

This way, if xi,k takes the value 1, the term M ·(xi,k − 1)
will evaluate to 0 and so zi,k will be forced to take the value
Ui; if xi,k instead takes the value 0, the term M ·(xi,k − 1)
will take the value −M . If M > maxi{Umax

i }, the expression
Ui +M ·(xi,k − 1) evaluates to a negative value, and thus, zi,k
will be forced to 0. To enforce schedulability, we can therefore
add a constraint of the following form for each core k:∑

τi∈ΓLO

zi,k ≤ 1. (23)

VII. EVALUATION

A. Analysis of Span Constraints

We begin by analyzing the number of constraints necessary
to enforce the intended interpretation of the span variables in
the MIQP discussed in §IV-B and §IV-C. Though we have
already provided theoretical upper bounds, we would like to
now empirically quantify a range of realistic problem sizes
associated with sets of synthetically-generated DAG tasks.
Experimental Setup: We generate DAGs according to a mod-
ified version of the Erdős-Rényi method [40]:

1) Select a number of vertices k for the DAG G (we iterate
over values of k from 5–50).

2) For each pair of vertices in {v2, ..., vk−1}, add a connecting
edge with probability p (we iterate over values of p from
0.05–0.95 in steps of 0.05). So the graph remains acyclic,
we direct the edge from the smaller to larger vertex index.

3) Vertex v1 is the source vertex: direct an edge from it to all
remaining vertices (except vk) with no incoming vertices.
Similarly, vertex vk is the sink: direct an edge to it from all

vertices with no outgoing vertices. This guarantees that the
DAG is weakly connected.

4) For every edge E connecting vertex va to vb, if there exists
a path from va to vb in G\E, then E is a shortcut and
is removed as illustrated in Fig. 4. This guarantees that no
path from source to sink is a subset of another path, so every
path might form the critical path, depending on its vertex
weights (i.e., the corresponding subtask execution times).

For each combination (k, p), we generate 10 000 graphs.
Counting Maximal Paths: For each DAG, we count the
number of paths from the source to the sink vertex; these are
exactly the set of maximal paths and correspond to constraints
in the form of Eqn. 10. We plot the mean and maximum count
for each pair (k, p) in Fig. 5.

We observe that an edge probability of 0.5 is expected
to produce the largest number of maximal paths. For tasks
with 50 subtasks and p = 0.5, 8465 constraints of the form
of Eqn. 10 will be added on average with a maximum
observed of 106 560. However, an edge probability of 0.55
gives the maximum observed overall at 133 632 such paths. In
comparison, the maximum possible for the pathological case
illustrated in Fig. 3 is 3(50−2)/3, which is over 43 million.
Counting Edges: For each DAG, we also count the number of
edges remaining after removal of shortcut edges. Each such
edge corresponds to a constraint in the form of Eqn. 12 or
Eqn. 13. Results are plotted in Fig. 6.

We observe that for smaller numbers of subtasks, an edge
probability of 0.2 is expected to produce the largest number
of edges, as edge shortcuts are removed after the initial
set of edges are generated. As the number of subtasks k
approaches 50, p = 0.15 is expected to result in the most
edges: 106 on average. The maximum observed overall was
136. Most importantly, as the number of subtasks increases, the
number of paths rapidly overtakes the number of edges. This
suggests that the method in §IV-C for enforcing the intended
interpretation of the span variables using a constraint for each
edge in the task DAG will tend to scale better with problem
size; we confirm this with the following experiments.

B. MIQP Solver Performance

We now evaluate the feasibility of solving the optimization
problem listed in Eqn. 4. We use version 10.0.3 [41] of
the Gurobi Optimizer [22] to solve the MIQP. We measure
execution times on a server with an AMD EPYC 9754 CPU
and 128GB of RAM running Linux 5.14.0. Simultaneous
Multithreading and CPU throttling are disabled.
Compressing Individual Tasks: We begin by randomly gen-
erating tasks according to the modified Erdős-Rényi method
outlined above, using an edge probability of p = 0.5 since we
have observed that this typically induces the greatest number
of maximal paths. For each value k (number of subtasks) in
5–50, we generate 1000 such tasks, for a total of 46 000.

Each subtask τi,j has its elasticity Ei,j randomly selected
as an integer from the range 1–100. To assign a range of
acceptable execution times to each subtask, we randomly



(a) Mean path counts

(b) Max path counts

Fig. 5: Maximal path count statistics.

(a) Mean edge counts

(b) Max edge counts

Fig. 6: Edge count statistics.

5 10 15 20 25 30 35 40 45 50
Number of Subtasks

10 3

10 2

10 1

100

101

102

So
lu

tio
n 

Ti
m

e 
(s

) Paths: Max
Paths: Median
Edges: Max
Edges: Median

(a) Edge probability p = 0.5

5 10 15 20 25 30 35 40 45 50
Number of Subtasks

10 3

10 2

10 1

100

101

102

So
lu

tio
n 

Ti
m

e 
(s

) Paths: Max
Paths: Median
Edges: Max
Edges: Median

(b) Edge probability p = 0.2

Fig. 7: MIQP times for individual tasks.

select two integer values in the range 1–100. The smaller
value is assigned to cmin

i,j and the larger to cmax
i,j . So that the

task remains high-utilization even if all subtasks are assigned
their minimum execution times, we randomly select Di as an
integer from the range [Lmax

i + 1, Cmin
i − 1] (if Di ≤ Li, the

core assignment in Eqn. 2 becomes invalid). If for some task
τi, Lmax

i + 1 > Cmin
i − 1, values of ci,j are regenerated.

Generated parameters are used with Eqn. 2 to determine
the minimum mmin

i and maximum mmax
i number of cores

to guarantee schedulability for each task; the integer value
m of total cores available is selected uniformly from the
range [mmin

i ,mmax
i − 1]. We formulate two MIQPs for each

task according to the procedure in §IV, using both proposed
methods to enforce the intended interpretation of the span
variables. We configure Gurobi to execute in a single thread.

Results are plotted in Fig. 7a. We observe that for smaller
numbers of subtasks (i.e., up to around 20), the selection of the
method for enforcing the intended interpretation of the span
variables does not have a significant impact on execution time.
However, as the number of subtasks increases further, a con-
straint per edge becomes significantly faster. With a constraint
per edge, a solution was reached in under 42ms in the worst
case, with a median under 6.6ms for 50 subtasks. But with a
constraint per path, solution search took up to 30.2 s in the
worst case (726× slower), and for tasks with 50 subtasks, the
median time was 434ms (66.7× slower).

We rerun the experiment, this time generating task DAGs us-
ing an edge probability of p = 0.2, since this typically induces
the greatest number of edges. Nonetheless, Fig. 7b illustrates
that the execution time behavior remains very similar when
solving the MIQP that uses a constraint per edge. However,
since the number of maximal paths decreases significantly, the
median execution time of the MIQP that uses a constraint per
path grows more slowly, remaining roughly equivalent to using

a constraint per edge for tasks with up to about 30 subtasks.
For tasks with 50 subtasks, the median time to reach a solution
using a constraint per edge was under 7.0ms, compared to
25.5ms for a constraint per path (only a 3.67× difference).
Despite the smaller average-case difference that arises from
inducing more edges and fewer paths, using a constraint per
edge remains the preferred approach for single tasks.

Joint Task Compression: We next consider the joint compres-
sion of multiple parallel tasks. We randomly generate task sets
of size n from 2–10 in steps of 2. Every task in a task set is
assigned the same number k of subtasks; we consider values
of k from 5–20. For each pair (n, k), we generate 100 task
sets using the above methodology with an edge probability
of p = 0.5, and another 100 with an edge probability of
p = 0.2, for a total of 16 000. Eqn. 3 determines the minimum
mmin

SUM and maximum mmax
SUM number of cores to guarantee

schedulability for each task system; the value m of total cores
available is selected uniformly from [mmin

SUM,m
max
SUM − 1].

We again formulate two MIQPs for each task according
to the procedures in §IV, then solve with Gurobi using a
single thread. This time, we force the solver to terminate if no
solution is found after one hour. Results are plotted in Fig. 8.

We observe slight differences in maximum execution times
between the two methods for representing span, and between
DAGs generated with different edge probabilities. For p =
0.5 and a span constraint per path, the maximum observed
execution time for 2 tasks was 97.8ms, 3.05× slower than
the maximum 32.0ms observed with a constraint per edge
(this is not visually obvious due to the logarithmic scale in
the y-axis). For p = 0.2, the maximum observed execution
time for 2 tasks was 41.4ms with a constraint per path, and
33.8ms with a constraint per edge: with fewer paths and more
edges, the maximum time when using path constraints was cut



5 10 15 20
Number of Subtasks

10 3

10 2

10 1

100

So
lu

tio
n 

Ti
m

e 
(s

)

(a) Paths, p = 0.5: median times

5 10 15 20
Number of Subtasks

10 3

10 2

10 1

100

So
lu

tio
n 

Ti
m

e 
(s

)

(b) Edges, p = 0.5: median times

5 10 15 20
Number of Subtasks

10 1

101

103

So
lu

tio
n 

Ti
m

e 
(s

)

(c) Paths, p = 0.5: max times

5 10 15 20
Number of Subtasks

10 1

101

103

So
lu

tio
n 

Ti
m

e 
(s

)

(d) Edges, p = 0.5: max times

5 10 15 20
Number of Subtasks

10 3

10 2

10 1

100

So
lu

tio
n 

Ti
m

e 
(s

)

(e) Paths, p = 0.2: median times

5 10 15 20
Number of Subtasks

10 3

10 2

10 1

100

So
lu

tio
n 

Ti
m

e 
(s

)

(f) Edges, p = 0.2: median times

5 10 15 20
Number of Subtasks

10 1

101

103

So
lu

tio
n 

Ti
m

e 
(s

)

(g) Paths, p = 0.2: max times

5 10 15 20
Number of Subtasks

10 1

101

103

So
lu

tio
n 

Ti
m

e 
(s

)

(h) Edges, p = 0.2: max times

Fig. 8: Joint MIQP solver times. Series in each plot, from bottom to top, are for sets of 2, 4, 6, 8, and 10 tasks.

by 2.36×, whereas the maximum time associated with edge
constraints only increased by 5%. Moreover, for more than
2 tasks, the median execution times associated with maximal
path constraints are much higher than those associated with
edge constraints, and even higher when there are more paths.

Most notably, execution times increase rapidly as tasks are
added. For every 2 additional tasks added beyond the first 4,
both the median and maximum execution times increase by
about an order of magnitude. With a span constraint per path,
2 task sets timed out at the imposed 1 hour time limit for an
edge probability p = 0.2 and 4 for p = 0.5. With a constraint
per edge, only 1 timed out for p = 0.2 and 2 for p = 0.5.
This suggests that neither solution approach that uses a single
MIQP scales well with the number of tasks.

C. DP-Based Solution Performance

Though solving a single joint MIQP for larger sets of tasks
rapidly becomes infeasible, but remains efficient for individual
tasks. We therefore expect our DP-based approach of §V to
outperform the single MIQP for larger sets of tasks. Moreover,
we expect that if the MIQPs are solved offline when task
parameters are characterized, it will be possible to quickly
solve the DP online to achieve real-time task adaptation.

To test these hypotheses, we generate new task sets of size
n from 2–20 in steps of 2, each assigned the same number k
of subtasks from 5–50 in steps of 5. For each pair (n, k), we
generate 100 task sets each for edge probabilities of p = 0.5
and p = 0.2 in the same manner as before, for a total of 20 000.

Measured execution times are plotted in Fig. 9. Results
indicate that our DP-based approach remains efficient even
for larger numbers of tasks — with an edge probability of
p = 0.5, total execution time remains less than one minute
for 20 tasks with 50 subtasks each. Compared to solving a
single joint MIQP, which can take over an hour for 10 tasks
with 20 subtasks, this a substantial improvement. Moreover,
just solving the DP is even faster, taking under 60ms for
up to 20 tasks with 50 subtasks. Where the MIQPs can be
solved offline, this can enable real-time online adaptation and
re-allocation of cores, e.g., during admission control of new
tasks, or when the number of available processors changes.

Results are even better for DAG tasks generated using an
edge probability of p = 0.2. Total execution time remained
under 19s, while solving the DP took under 11ms. Despite
the number of edges being higher, on average, for p = 0.2,
the DAG tasks thus generated are generally able to occupy
fewer cores; thus, the number of MIQPs to solve, and the
number of choices for the DP, are lower.

D. Comparison to Prior Work

We next compare our model to the earlier method of
Orr et al. that holds task spans constant [12]. We intend to
characterize the extent to which, by considering that the span
term Li in Eqn. 2 decreases with the workload Ci, our model
can reduce the amount of compression necessary to achieve
schedulability, and in doing so reduce the minimum number
of cores needed to schedule a compressed task.

To do so, we consider the 92 000 individual tasks with num-
bers k of subtasks from 5–50 already generated for §VII-B.
For each task τi, we compute the minimum and maximum total
execution times Cmin

i , Cmax
i and spans Lmin

i , Lmax
i . We then

use these values with Eqn. 2 to compute the maximum number
of cores mmax

i needed to schedule the task. We also calculate
the minimum mmin

i to achieve schedulability under our model
(using Lmin

i ) and the minimum mmin ∗
i that arises from the

model of Orr et al. due to keeping the span constant (using
Lmax
i ). For each number of cores in [mmin ∗

i ,mmax
i − 1], we

determine the workload Ci to achieve schedulability according
to Eqn. 2 under the model of Orr et al., again keeping the span
fixed at Lmax

i . We compare this to the total workload
∑

j ci,j
achieved by our MIQP-based model.
Comparison of Minimum Core Allocations: We begin by
considering the ratio mmin

i /mmin ∗
i of the minimum number

of cores allowed by each model. These are plotted in Fig. 10a.
We observe that the ratio does not appear to be highly depen-
dent on the number of subtasks. However, it does illustrate
that by also compressing task span, the minimum number
of cores on which a task can be scheduled is decreased.
On average, the value mmin

i achieved by our subtask-aware
model is 0.72× the value mmin ∗

i . We also measure the value∑
i m

min
i /

∑
i m

min ∗
i , aggregating the minimum demand for



(a) Median MIQP times, p = 0.5 (b) Median DP times, p = 0.5 (c) Max MIQP times, p = 0.5 (d) Max DP times, p = 0.5

(e) Median MIQP times, p = 0.2 (f) Median DP times, p = 0.2 (g) Max MIQP times, p = 0.2 (h) Max DP times, p = 0.2

Fig. 9: Execution time statistics for DP-based approach.

0 10 20 30 40 50
Number of Subtasks

0.00

0.25

0.50

0.75

1.00

Co
re

 R
at

io

Median
Mean
Minimum

(a) Ratio of minimum allowed cores

0 10 20 30 40 50
Number of Subtasks

1.0

1.5

2.0

2.5

W
or

kl
oa

d 
Ra

tio

Max Mean Med

(b) Ratio of compressed workloads

Fig. 10: Comparison to the approach in [12].

cores under both models across all 46 000 sets of tasks. The
result suggests that, on average, our model may be able to
schedule sets of tasks on systems with 36% the number of
cores needed by the earlier method in [12]. Moreover, in
cases where most of a task’s workload lies on its critical path,
adjusting the span Li during workload compression enabled
schedulability on systems with fewer than 1% the number of
cores needed when holding span constant.
Comparison of Total Workloads: We next compare the amount
of computational workload that remains available to tasks
when compressed under each model. For every number of
cores on which each task can be compressed by both models,
we compare the values Ci achieved by our subtask-level elastic
scheduling model, to the values C∗

i achieved by the earlier
model of Orr et al. [12]. Fig. 10b shows the ratio Ci/C

∗
i of the

two values. Once again, we do not see a significant relationship
between the ratio and the number of subtasks. We also observe
that by compressing task span, a task’s total workload does not
have to be compressed as much to be schedulable on a given
number of cores. The median of the ratio Ci/C

∗
i is 1.24, and

at best, our subtask-level model achieves a workload 2.49×
that of the original model in [12]. This suggests that our model
allows workload-elastic tasks to complete more work, which
should improve outcomes (e.g., result accuracy).

E. MILP for Partitioned EDF

Finally, we evaluate the feasibility of solving the MILP
for elastic scheduling under partitioned EDF. We randomly
generate sets of sequential tasks of size n from 5–25. For each

n we generate 1000 tasks, for a total of 26 000. Every task
τi has a maximum utilization Umax

i of 1. Using the Dirichlet
Rescale (DRS) algorithm [42], we assign minimum utilizations
Umin
i uniformly from the space of selections satisfying the

conditions that (i) the total minimum utilization
∑

i U
min
i is

1 and (ii) Umin
i ≤ Umax

i for every task τi. Elasticities Ei are
selected uniformly from the integers 1–100. Since the MILP
in §VI-B only assigns utilizations, we do not generate period
or workload values for these tasks.

Our chosen utilization ranges make it feasible but nontrivial
to find a compressed state for every core assignment in
[2, n− 1]. We do so for each taskset by constructing an MILP
according to the procedure in §VI-B. As before, we solve in a
single thread using Gurobi and measure the execution times.

Results are plotted in Fig. 11. Observed times were typically
sub-second, suggesting that our proposed MILP is feasible
for offline characterization. Combined with our DP-based
approach, low-utilization tasks can be jointly compressed with
high-utilization tasks when available resources change. In
multi-mode systems, where the collection of low-utilization
tasks may change, the MILP may be run offline (and cor-
responding solutions stored online) for each discrete mode.
However, the solver occasionally took several minutes (up
to 11) to complete. Where new low-utilization tasks can be
arbitrarily admitted to a running system, the pessimistic (but
efficient) utilization-bound approach outlined in §VI-B might
be necessary for online adaptation.

VIII. CASE STUDY: FIMS
The Fast Integrated Mobility Spectrometer (FIMS) [43],

[44] is a novel flown instrument for measuring and report-
ing atmospheric particle size distributions. Its computational
pipeline [23], [24] (i) images particles in an aerosol chamber,
(ii) processes these images to identify and bin particles in time
windows (as FIMS responses), and (iii) inverts the responses
to report size distributions. Accurate image processing is
computationally intensive, using 10 intensity masks to isolate
overlapping particles. Future drone-based deployments may



2 4 6 8 10 12 14 16 18 20 22 24
Cores m

5
10

15
20

25
Ta

sk
s n

10 1

100

(a) Median times

2 4 6 8 10 12 14 16 18 20 22 24
Cores m

5
10

15
20

25
Ta

sk
s n

100

101

102

Ti
m

e 
(s

)

(b) Max times

Fig. 11: Execution time statistics for partitioned EDF MILP.

8, 
2, 

10

16
, 2

, 1
0

8, 
2, 

15

16
, 2

, 1
5

8, 
3, 

10

16
, 3

, 1
0

8, 
3, 

15

16
, 3

, 1
5

Segments, Cores, Deadline

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 S

co
re

Elastic Non-Elastic

Fig. 12: Elastic vs Non-Elastic F1 Scores.

also require shorter periods due to reduced instrument size
and particle residence time in the chamber.

To improve latency, we segment each image for parallel
processing. The image processing task is thus represented as
a DAG with an initial subtask to read the image, parallel
subtasks to process each segment, and a final subtask to ag-
gregate and de-duplicate identified particles. Parallel execution
raises challenges on embedded platforms where size, weight,
and power (SWaP) constraints limit the number of cores. On
quad-core platforms, image processing might be allocated just
2 or 3 dedicated cores, since the FIMS housekeeping data
and response inversion tasks, as well as mission-critical drone
control, must be scheduled concurrently.

Toward supporting these requirements, we apply our
subtask-level elastic scheduling model to FIMS image pro-
cessing. The parallel subtasks that process each region are
elastic, with maximum workloads representing the worst-case
time to apply all 10 masks, but at a minimum, only a single
mask must be applied. Though the numbers of masks encode
discrete computational modes, we consider workloads to be
continuously-elastic, since more execution time increases the
likelihood of more masks completing. We assign each subtask
an elastic constant equal to the inverse of the average particle
density: more masks are applied to denser regions.

To quantify these parameters, we run the FIMS pipeline
in simulation on a Raspberry Pi 4B, with a 1.5GHz, 4-core
Cortex-A72 CPU and 4GB of RAM. We use 12 000 images
from the FIMS aerosol chamber collected over a 20 minute
instrument run. We segment the images into 8 or 16 regions,
and measure (after completion of all 10 image masks) the
number of particles in each. With CPU throttling disabled, we
profile the initial and final subtasks and the time to complete
each mask for each segment. The resulting execution time
distributions let us define minimum and maximum workloads
for each subtask in each configuration.

To evaluate our model, we constrain image processing to 2
or 3 cores with 10 or 15ms deadlines, using 8 or 16 image
segments. For each parameter combination, we use Gurobi
to solve the resulting quadratic program, assigning execution
time budgets to each image segment’s corresponding subtask.
We then consider the same sequence of test images; for
each image segment, we randomly sample from the obtained
execution time distributions to determine how many masks can
complete within the given budget, then compare the resulting

set of identified particles to the baseline where all complete.
Fig. 12 reports the F1 score [45] of the comparison for

each combination. This is the harmonic mean of the precision
and recall, measuring the algorithm’s ability to accurately
identify particles that appear in the baseline while balancing
the trade-off between false positives and false negatives. We
compare to a non-elastic version where every region is given
equal computational time within the deadline. Although the
stochastic nature of the execution times allowed the non-
elastic version occasionally to perform slightly better when
little compression was necessary (see, e.g., the result for 3
cores with 16 segments and a 15ms), in general, by considering
the individual importance of each subtask, our subtask-level
elastic scheduling model enables better result accuracy.

IX. CONCLUSIONS AND FUTURE WORK

This paper presents a new model of subtask-level elasticity
for federated scheduling of parallel tasks, which considers
the joint impact of compressing workloads of each subtask
in the task system, including changes to task spans. We
propose and evaluate two ways to formulate the problem as
an MIQP that can be solved efficiently with Gurobi to make
offline scheduling decisions. With proper offline characteriza-
tion, a dynamic-programming (DP) algorithm enables pseudo-
polynomial compression online to handle task admission or
changes in resource availability. It also enables federated core
allocation to elastic sequential tasks scheduled using fluid or
partitioned EDF. For partitioned EDF, we present an MILP
to find the minimum compression amount, and corresponding
partition, for a given number of cores. We validate our model
with the FIMS image processing task, where it improves
accuracy of atmospheric aerosol particle detection.

Future directions include (i) addressing hybrid-utilization
tasks, which may switch from high- to low-utilization during
workload compression; (ii) considering interdependent subtask
workloads; and (iii) evaluating multicore resource contention,
which can be significant [46], [47], and might cause worst-case
execution times to depend on core assignments.



ACKNOWLEDGMENT

This work was supported by NSF grants CPS-2229290 and
CNS-2141256, NASA award 80NSSC21K1741, a Washington
University OVCR seed grant, and a Washington University
CSE/EECE seed grant. Thanks to the several attendees of the
OPERA 2023 workshop, co-located with RTSS 2023, whose
suggestions were invaluable in constructing this paper. We
would especially like to thank Tanya Amert, Jian-Jia Chen,
Mario Günzel, and Corey Tessler for their insights.

REFERENCES

[1] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” in Proc. of IEEE Real-Time Systems Symposium,
1998. [Online]. Available: https://doi.org/10.1109/REAL.1998.739754

[2] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002. [Online]. Available:
http://dx.doi.org/10.1109/12.990127

[3] J. Kim, H. Kim, K. Lakshmanan, and R. Rajkumar, “Parallel scheduling
for cyber-physical systems: Analysis and case study on a self-driving
car,” in 2013 ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS), 2013, pp. 31–40.

[4] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time
computer vision workloads using openvx on multicore+gpu platforms,”
in 2015 IEEE Real-Time Systems Symposium, 2015, pp. 273–284.

[5] S. Aldegheri, N. Bombieri, D. D. Bloisi, and A. Farinelli, “Data flow
orb-slam for real-time performance on embedded gpu boards,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2019, pp. 5370–5375.

[6] D. Ferry, A. Maghareh, G. Bunting, A. Prakash, K. Agrawal, C. Gill,
C. Lu, and S. Dyke, “On the performance of a highly parallelizable
concurrency platform for real-time hybrid simulation,” in The Sixth
World Conference on Structural Control and Monitoring, 2014.

[7] D. Ferry, G. Bunting, A. Maghareh, A. Prakash, S. Dyke, K. Agrawal,
C. Gill, and C. Lu, “Real-time system support for hybrid structural
simulation,” in Proceedings of the 14th International Conference
on Embedded Software, ser. EMSOFT ’14. New York, NY, USA:
Association for Computing Machinery, 2014. [Online]. Available:
https://doi.org/10.1145/2656045.2656067

[8] M. Sudvarg, J. Buhler, J. H. Buckley, W. Chen et al., “A Fast GRB
Source Localization Pipeline for the Advanced Particle-astrophysics
Telescope,” PoS, vol. ICRC2021, p. 588, 2021.

[9] J. Wheelock, W. Kanu, M. Sudvarg et al., “Supporting multi-messenger
astrophysics with fast gamma-ray burst localization,” in Proc. of
IEEE/ACM HPC for Urgent Decision Making Workshop. IEEE, Nov.
2021.

[10] Y. Htet, M. Sudvarg, J. Buhler, R. Chamberlain, W. Chen, J. H.
Buckley et al., “Prompt and Accurate GRB Source Localization Aboard
the Advanced Particle Astrophysics Telescope (APT) and its Antarctic
Demonstrator (ADAPT),” in Proc. of 38th Int’l Cosmic Ray Conference,
vol. 444. Sissa Medialab, Jul. 2023, pp. 956:1–956:9.

[11] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in Proc.
of 26th Euromicro Conference on Real-Time Systems, 2014, pp. 85–96.
[Online]. Available: https://doi.org/10.1109/ECRTS.2014.23

[12] J. Orr, C. Gill, K. Agrawal, S. Baruah et al., “Elasticity of workloads
and periods of parallel real-time tasks,” in Proc. of 26th International
Conference on Real-Time Networks and Systems. ACM, 2018, pp.
61–71. [Online]. Available: https://doi.org/10.1145/3273905.3273915

[13] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic
scheduling,” in Proc. of IEEE International Real-Time Systems
Symposium, 2006, pp. 236–245. [Online]. Available: https://doi.org/10.
1109/RTSS.2006.24

[14] ——, “Generalized elastic scheduling for real-time tasks,” IEEE
Transactions on Computers, vol. 58, no. 4, pp. 480–495, Apr. 2009.
[Online]. Available: https://doi.org/10.1109/TC.2008.175

[15] C. Lu, X. Wang, and X. Koutsoukos, “End-to-end utilization control
in distributed real-time systems,” in 24th International Conference on
Distributed Computing Systems, 2004. Proceedings., 2004, pp. 456–466.

[16] ——, “Feedback utilization control in distributed real-time systems
with end-to-end tasks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 16, no. 6, pp. 550–561, 2005.

[17] A. Soyyigit, S. Yao, and H. Yun, “Anytime-lidar: Deadline-aware
3d object detection,” in 2022 IEEE 28th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA). Los Alamitos, CA, USA: IEEE Computer Society, aug
2022, pp. 31–40. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/RTCSA55878.2022.00010

[18] Y. Bai, L. Li, Z. Wang, X. Wang, and J. Wang, “Performance opti-
mization of autonomous driving control under end-to-end deadlines,”
Real-Time Systems, vol. 58, no. 4, pp. 509–547, Dec 2022.

[19] M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, J. Buckley, and W. Chen,
“Parameterized workload adaptation for fork-join tasks with dynamic
workloads and deadlines,” in 2023 IEEE 29th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2023, pp. 1–10.

[20] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel,
“Proportionate progress: A notion of fairness in resource allocation,”
Algorithmica, vol. 15, no. 6, pp. 600–625, Jun 1996. [Online].
Available: https://doi.org/10.1007/BF01940883

[21] S. Baruah, “Partitioned edf scheduling: a closer look,” Real-Time
Systems, vol. 49, no. 6, pp. 715–729, Nov 2013. [Online]. Available:
https://doi.org/10.1007/s11241-013-9186-0

[22] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2024. [Online]. Available: https://www.gurobi.com

[23] D. Wang, J. Zhang, J. Buhler, and J. Wang, “Real-time analysis
of aerosol size distributions with the fast integrated mobility
spectrometer (FIMS),” in 41st Conference of American Association
for Aerosol Research (AAAR), Oct. 2023. [Online]. Available:
https://aaarabstracts.com/2023/view abstract.php?pid=752

[24] M. Sudvarg, A. Li, D. Wang, S. Baruah, J. Buhler, C. Gill, N. Zhang, and
P. Ekberg, “Elastic scheduling for harmonic task systems,” in 2024 Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2024.

[25] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah, “Elastic scheduling for
parallel real-time systems,” Leibniz Transactions on Embedded Systems,
vol. 6, no. 1, p. 05:1–05:14, May 2019. [Online]. Available: https:
//ojs.dagstuhl.de/index.php/lites/article/view/LITES-v006-i001-a005

[26] M. Sudvarg, J. Buhler, R. D. Chamberlain, C. Gill, J. Buckley, and
W. Chen, “Parameterized workload adaptation for fork-join tasks with
dynamic workloads and deadlines,” in Proc. of IEEE 29th International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications (RTCSA), Aug. 2023, pp. 232–242.

[27] J. Orr, J. C. Uribe, C. Gill, S. Baruah et al., “Elastic scheduling
of parallel real-time tasks with discrete utilizations,” in Proc.
of 28th International Conference on Real-Time Networks and
Systems. ACM, 2020, pp. 117–127. [Online]. Available: https:
//doi.org/10.1145/3394810.3394824

[28] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[29] Y. Bai, Z. Wang, X. Wang, and J. Wang, “Autoe2e: End-to-end real-
time middleware for autonomous driving control,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS),
2020, pp. 1101–1111.

[30] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 12 689–12 697.

[31] S. Odagiri and H. Goto, “On the greatest number of paths and maximal
paths for a class of directed acyclic graphs,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 97, no. 6, pp. 1370–1374, 2014.

[32] M. Sudvarg and C. Gill, “Analysis of federated scheduling for
integer-valued workloads,” in Proceedings of the 30th International
Conference on Real-Time Networks and Systems, ser. RTNS 2022.
New York, NY, USA: Association for Computing Machinery, 2022, p.
12–23. [Online]. Available: https://doi.org/10.1145/3534879.3534892

[33] P. Turán, “On an extremal problem in graph theory,” Matematikai és
Fizikai Lapok, vol. 48, pp. 436–452, 1941.

[34] H. Kellerer, U. Pferschy, and D. Pisinger, The Multiple-
Choice Knapsack Problem. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 317–347. [Online]. Available:
https://doi.org/10.1007/978-3-540-24777-7 11



[35] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,”
in Proc. of 27th International Conference on Real-Time Networks
and Systems. ACM, 2019, pp. 133–142. [Online]. Available:
https://doi.org/10.1145/3356401.3356403

[36] M. Sudvarg, C. Gill, and S. Baruah, “Improved implicit-deadline
elastic scheduling,” in Proceedings of the 14th IEEE International
Symposium on Industrial Embedded Systems (SIES 2024). IEEE,
2024. [Online]. Available: https://sudvarg.com/publications/SIES2024
improved implicit elastic.pdf

[37] ——, “Linear-time admission control for elastic scheduling,” Real-Time
Systems, vol. 57, no. 4, pp. 485–490, Oct 2021. [Online]. Available:
https://doi.org/10.1007/s11241-021-09373-4

[38] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSˆRT : A testbed for empirically comparing real-time
multiprocessor schedulers,” in 2006 27th IEEE International Real-Time
Systems Symposium (RTSS’06), 2006, pp. 111–126.

[39] M. Sudvarg, S. Baruah, and C. Gill, “Elastic scheduling for fixed-priority
constrained-deadline tasks,” in 2023 IEEE 26th International Symposium
on Real-Time Distributed Computing (ISORC), 2023, pp. 11–20.

[40] L.-C. Canon, M. E. Sayah, and P.-C. Héam, “A comparison of random
task graph generation methods for scheduling problems,” in Euro-
Par 2019: Parallel Processing, R. Yahyapour, Ed. Cham: Springer
International Publishing, 2019, pp. 61–73.

[41] S. Mars, “Gurobi 10.0.3 released,” Gurobi Optimization, Technical
Report, September 2023. [Online]. Available: https://support.gurobi.
com/hc/en-us/articles/18530517319953-Gurobi-10-0-3-released

[42] D. Griffin, I. Bate, and R. I. Davis, “Generating Utilization Vectors for
the Systematic Evaluation of Schedulability Tests,” in 2020 IEEE Real-
Time Systems Symposium (RTSS), 2020, pp. 76–88.

[43] J. Wang, M. Pikridas, S. R. Spielman, and T. Pinterich, “A fast integrated
mobility spectrometer for rapid measurement of sub-micrometer aerosol
size distribution, part i: Design and model evaluation,” Journal of
Aerosol Science, vol. 108, pp. 44–55, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0021850216304426

[44] Y. Wang, T. Pinterich, and J. Wang, “Rapid measurement of sub-
micrometer aerosol size distribution using a fast integrated mobility
spectrometer,” Journal of Aerosol Science, vol. 121, pp. 12–20, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0021850217305049

[45] N. Chinchor, “Muc-4 evaluation metrics,” in Proceedings of the
4th Conference on Message Understanding, ser. MUC4 ’92. USA:
Association for Computational Linguistics, 1992, p. 22–29. [Online].
Available: https://doi.org/10.3115/1072064.1072067

[46] A. Li, M. Sudvarg, H. Liu, Z. Yu, C. Gill, and N. Zhang, “Polyrhythm:
Adaptive tuning of a multi-channel attack template for timing interfer-
ence,” in 2022 IEEE Real-Time Systems Symposium (RTSS). IEEE,
2022, pp. 225–239.

[47] A. Li, J. Wang, S. Baruah, B. Sinopoli, and N. Zhang, “An empirical
study of performance interference: Timing violation patterns and im-
pacts,” in 2024 IEEE 30th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2024, pp. 320–333.


