
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Learning-Assisted Schedulability Analysis:

Opportunities and Limitations

Sanjoy Baruah1*, Pontus Ekberg2 and Marion Sudvarg3

1*Department of Computer Science and Engineering, Washington
University in St. Louis, St. Louis, Missouri, United States.

2Department of Information Technology, Uppsala University, Uppsala,
Sweden.

3Department of Physics, Washington University in St. Louis, St. Louis,
Missouri, United States.

*Corresponding author(s). E-mail(s): baruah@wustl.edu;
Contributing authors: pontus.ekberg@it.uu.se; msudvarg@wustl.edu;

Abstract

We present the first (to our knowledge) Deep-Learning based framework for real-
time schedulability-analysis that guarantees to never incorrectly mis-classify an
unschedulable system as being schedulable, and is hence suitable for use in safety-
critical scenarios. We relate applicability of this framework to well-understood
concepts in computational complexity theory: membership in the complexity class
NP. We apply the framework upon the widely-studied schedulability analysis
problems of determining whether a given constrained-deadline sporadic task system
is schedulable on a preemptive uniprocessor under both Deadline-Monotonic
and EDF scheduling. As a proof-of-concept, we implement our framework for
Deadline-Monotonic scheduling, and demonstrate that it has a predictive accuracy
exceeding 70% for systems of as many as 20 tasks without making any unsafe
predictions. Furthermore, the implementation has very small (<1 ms on two
widely-used embedded platforms; <4 µs on an embedded FPGA) and highly
predictable running times.

Keywords: Schedulability analysis; Computational complexity: NP-completeness;
Learning-Enabled Components (LECs); Deep Learning

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

1 Introduction

With Deep Learning (DL) already widely used in autonomous Cyber-Physical Systems
(CPS’s) for purposes of perception, research efforts are underway to also use it to
speed up computation – this is particularly meaningful for autonomous CPS’s that
are not tethered to the power grid and hence must make do with relatively simple
computing platforms on board. In this work we investigate the use of DL to speed
up a form of computation that is commonly and repeatedly performed in real-time
CPS’s: schedulability analysis, which is the process of validating the correctness of
timing properties. Many basic and fundamental forms of schedulability analysis are
known to be computationally intractable and hence applying DL to speed it up seems
a reasonable goal. However, schedulability is frequently a safety-critical property:
incorrectly mis-classifying an unschedulable system as being schedulable could have
potentially catastrophic consequences. There is, to our knowledge, no prior DL-based
schedulability analysis that guarantees to never return ‘false positives’ — to incorrectly
declare some unschedulable system to be schedulable. In this paper, we are proposing
the first conceptual framework for using Deep Learning for schedulability analysis that
guarantees to return no false positives, and is hence suitable for use in safety-critical
systems.

System
Specifications

“Is the system schedulable?”

Learning-Enabled

Component (LEC)

Yes

No

Fig. 1 LEC-based schedulability analysis

Envisioned use-cases.

Safety-critical systems were traditionally relatively simple and closed, and were intended
to operate under tightly controlled conditions. This is rapidly changing: modern CPS’s
can be enormously complex and are required to operate safely and effectively in
open environments that are characterized by a good deal of uncertainty. With such
systems becoming increasingly more dynamic as a means of being adaptive to changing
conditions in their operating environments, schedulability analysis algorithms need
frequent re-execution during run-time (often as part of admission control procedures)
as the workload and/ or platform changes in ways that were not anticipated during
pre-runtime analysis. Pseudo-polynomial running times are often far too large for such
algorithms to be suitable for runtime use. This directly leads to a need for extremely
efficient schedulability-analysis algorithms, often upon computationally very limited
platforms, which motivates the question that is explored in this manuscript: can we
train Learning-Enabled Components (LECs) to classify system specifications as either
satisfying a given schedulability property, or failing to do so? – see Figure 1. Doing
so enables the safety-critical computing community to leverage off the tremendous
advances in DL and related AI technologies that have occurred over the past two

2

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

decades or so. However, although DL has proved very effective in solving a wide range
of problems, it has also been observed [1] that DL does not necessarily perform very
well upon all problems: given the increasing need for rapid schedulability analysis, we
believe it merits investigation whether the approach of Figure 1 is (or can be rendered)
effective for schedulability analysis.

This work.

In this manuscript we report on our findings from a conceptual and experimental
evaluation of DL-based schedulability analysis, that we have conducted with the goal
of understanding its scope and limitations. The main conclusion that we are able to
draw is this:

Deep Learning (DL) is applicable for solving some, but not all, schedulability-analysis
problems of interest. There is a systematic approach for determining whether DL is
applicable for solving a given schedulability-analysis problem. A framework can be
defined for applying DL upon those schedulability-analysis problems for which it is
determined to be applicable.

This conclusion suggests a two-step approach to applying DL for schedulability
analysis: (i) identifying schedulability-analysis problems that can be delegated to
DL and determining how such delegation is to be done; and (ii) actually developing
DL systems for solving these problems. This paper primarily focuses on the first step:
figuring out how to identify schedulability-analysis problems that are amenable to
solution using DL-based techniques, and defining a DL-based framework for solving
these problems. We believe that developing the ‘best’ DL systems for those problems
that are identified as being suitable requires close collaboration with experts in Machine
Learning with the requisite knowledge and skills to choose and train the appropriate
NN architectures. That is in itself an entire research project, which, while critically
important in order to make best use of the results we derive here, does not fall within
the scope of the ideas that we seek to present in this paper. We therefore defer detailed
investigation on this second step to future work; here, we focus on the first step, and
use simple proof-of-concept implementations for well-studied schedulability-analysis
problems to demonstrate the relevance and applicability of our proposed approach and
the accompanying framework.1

Contributions.

The main contribution of this paper is the development of a conceptual framework
for using Deep Learning for schedulability analysis that guarantees to never incorrectly
classify an unschedulable system as being schedulable; this is, to our knowledge, the
first work on DL-based schedulability analysis that can make such a guarantee. In
greater detail:

• We derive an exact (necessary and sufficient) condition for our framework to be
applicable. That is, we identify a precise condition (stated as Proposition (1) in

1In other words, we are not claiming that our DL implementations are the best possible: while we realize
that they may perhaps be improved by making use of more advanced results from Deep Learning, we consider
doing so to be beyond the scope of this paper.

3

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Section 3) for determining whether any particular schedulability-analysis problem
is suitable for solving via our framework.

• We illustrate the applicability of Proposition (1) by identifying schedulability-
analysis problems that are amenable to DL-based solution, as well as ones that
are not. We develop simple proof-of-principle implementations of DNN-based
schedulability tests for some of the schedulability-analysis problems that are
shown to be amenable to DL-based solution, and experimentally evaluate these
DNNs along various dimensions (their effectiveness; run-time overheads; FPGA
implementation) upon synthetically generated workloads.

Organization. The remainder of this manuscript is organized in the following
manner. In Section 2 we formally describe the specific schedulability-analysis problems
that we will be studying from a DL perspective. We present our proposed framework for
DL-based schedulability analysis in Section 3. We have implemented and evaluated this
framework on the problems that are described in Section 2; our evaluation experiments
are detailed in Section 4. We conclude in Section 5 by discussing some related work
and placing our results within the larger context of real-time scheduling theory.

2 Background: Schedulability Analysis

In this section we briefly describe (and provide the needed background information on)
the schedulability-analysis problems that we will, in the following sections, examine from
the perspective of developing DL-based solutions. Since our emphasis in this paper is
primarily on Deep Learning, we have chosen to focus upon very simple and particularly
well-studied schedulability-analysis problems with which most members of the real-time
computing community are already familiar. In Section 5 (paragraph titled “Other
schedulability-analysis problems”) we will briefly discuss how the ideas contained
in this paper may be generalized and extended to additional schedulability-analysis
problems, and list some such problems.

The sporadic tasks model [2].

The scheduling of collections of independent sporadic tasks Γ = {τ1, τ2, . . . , τn} upon a
shared preemptive processor is one of the most widely-studied problems in real-time
scheduling theory. Each sporadic task τi = (Ci, Di, Ti) is characterized by three non-
negative integer parameters: its worst-case execution time (or WCET) Ci, its relative
deadline Di, and its inter-arrival separation parameter (or period) Ti. Sporadic task sys-
tems with Di ≤ Ti for all tasks are called constrained-deadline systems. We consider the
following two schedulability-analysis problems: is a given constrained-deadline sporadic
task system guaranteed to always meet all deadlines upon a preemptive uniprocessor
platform, when scheduled using the (i) Fixed-Priority (FP) and (ii) Earliest-Deadline
First (EDF) scheduling algorithms?

Fixed-Priority (FP).

In FP scheduling, each task is statically assigned a priority prior to run-time and at
each instant during run-time the currently active job that has been generated by the

4

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

highest-priority task is scheduled for execution.2 Determining whether a given task
system is FP-schedulable is known to be NP-complete [4, 5]; hence, it makes sense to
explore the use of deep learning to speed up FP-schedulability analysis.

It has been shown [6–8] that a necessary and sufficient FP-schedulability condition
for task system Γ is that for each τi ∈ Γ, the recurrence:

Ri ≥ Ci +
∑

τj∈hp(τi)

⌈
Ri

Tj

⌉
· Cj (1)

should have a positive solution for Ri that is no larger than τi’s relative deadline Di

(here, hp(τi) denotes the tasks with greater priority than τi). Response-Time Analysis
(RTA) deploys straightforward techniques for solving such recurrences to determine
the smallest value of Ri satisfying this recurrence for each τi, and declares the system
to be FP-schedulable if and only if Ri ≤ Di holds for all τi ∈ Γ.

Earliest-Deadline First (EDF).

In EDF scheduling, jobs are prioritized according to their deadlines: at each instant
during run-time the currently active job whose deadline (arrival time + relative-deadline
parameter of the task that generated it) is the closest in the future is scheduled for
execution. EDF-schedulability analysis is known to be coNP-complete [9], and it is
therefore again meaningful to explore whether deep learning can help speed things up.
Processor Demand Analysis (PDA) is an exact technique for schedulability analysis
of constrained-deadline sporadic task systems that are scheduled by EDF upon a
preemptive uniprocessor. This technique is centered upon the concept of the demand
bound function (dbf): for any sporadic task τi = (Ci, Di, Ti) and any interval-duration
t ≥ 0, dbfi(t) denotes the maximum possible cumulative execution requirement by
jobs of task τi that both arrive in, and have their deadlines within, any contiguous
interval of duration t. The following formula for computing dbfi(t) was derived in [2]:

dbfi(t) = max

(⌊
t−Di

Ti

⌋
+ 1, 0

)
· Ci (2)

and it was shown that a necessary and sufficient condition for Γ = {τ1, τ2, . . . , τn}
to be EDF-schedulable upon a preemptive unit-speed processor is that the following
condition hold for all t ≥ 0: ∑

τi∈Γ

dbfi(t) ≤ t (3)

It was also proved in [2] that Condition (3) need only be checked for values of t that are
of the form t ≡ (k × Ti +Di) for some non-negative integer k and some i, 1 ≤ i ≤ n;
furthermore, only such values that are no larger than the least common multiple of
the Ti parameters of all the tasks need be tested. The set of all such values of t for

2It is known [3, Thm 2.4] that the deadline monotonic (DM) priority assignment, in which tasks with
smaller Di parameters are assigned greater priority, is optimal for constrained-deadline sporadic task systems.
Hence, we focus our attention in this paper on FP-schedulability analysis of systems for which priorities are
assigned in DM-order.

5

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e
Overall Accuracy
True Positive Rate
True Negative Rate
False Positives

(a) FP Schedulability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Overall Accuracy
True Positive Rate
True Negative Rate
False Positives

(b) EDF Schedulability

Fig. 2 Performance of DNN schedulability classifiers for systems of 4 tasks, plotted as a function of
system utilization – see Section 3.1. The ‘Overall Accuracy’ curve denotes the fraction of generated
task systems that are correctly classified by the DNN as being schedulable or not. The ‘True Positive
Rate’ (‘True Negative Rate,’ respectively) curve denotes the fraction of schedulable (not schedulable,
resp.) task systems that are correctly identified as such. The ‘False Positives’ curve denotes the fraction
of generated task systems that are incorrectly classified by the DNN as being schedulable.

which it needs to be checked that Condition (3) is satisfied in order to verify EDF-
schedulability is called the testing set for task system Γ and often denoted T(Γ). It
is known [2] that the cardinality |T(Γ)| of the testing set T(Γ) may in general be
exponential in the representation of Γ; however, it has been shown [10, Theorem (3.1)]
that a smaller testing set, of cardinality pseudo-polynomial in the representation of
Γ, can be identified for bounded-utilization task systems —systems Γ satisfying the
additional condition that

∑
τi∈Γ Ui ≤ c for some constant c strictly smaller than 1.

3 A Framework for Learning-Enabled Schedulability
Analysis

In this section we motivate and describe our proposed framework for enabling the safe
and effective use of DL for doing schedulability analysis. We start out (Section 3.1)
briefly describing DL-based implementations that we have built, according to the
framework provided in Figure 1, for our two schedulability-analysis problems of interest
(preemptive uniprocessor FP- and EDF-schedulability analysis of constrained-deadline
sporadic task systems). In Section 3.2 we point out some problems that arise in such
implementations. We propose a solution to these problems in Section 3.3 by defining
an enhancement, in Figure 3, to the earlier framework of Figure 1, and derive, in
Section 3.4, a precise condition for determining which schedulability-analysis problems
are amenable to solution using this enhanced framework.

3.1 LECs for schedulability analysis

As stated in Section 1, the goal of this research is to develop LECs based on deep
learning for doing schedulability analysis. As a first step towards achieving this goal, we

6

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

trained simple multilayer perceptrons (MLPs) to perform FP and EDF schedulability-
analysis for small task systems in accordance with the framework of Figure 1. In
particular, we trained a pair of networks, each with two 15-node fully-connected hidden
layers, to perform binary classification for predicting FP and EDF schedulability
respectively for sporadic task systems of 4 tasks3 – the observed performance of these
networks are presented in Figure 2. Two important observations emerged:
1. DL appears to be very effective in classifying systems as schedulable or not: we see

from Figure 2 that for 4-task systems, predictive accuracy exceeds 95% for both FP
and EDF schedulability analysis. (Additional experiments, reported in Section 4,
indicate that prediction accuracy does not degrade too steeply with system size: it
still exceeds 92% for FP schedulability of 20-task systems.)

2. DL makes occasional mistakes: classification accuracy is not 100% for either FP or
EDF schedulability analysis.

The first of these observations is grounds for optimism: it shows the promise of DL for
identifying schedulable systems. The second observation, however, gives us pause since
it emphasizes the well-known fact that Deep Learning will occasionally make mistakes:
erroneously classify a schedulable system as unschedulable, or vice versa. We must
understand the consequences of such errors, and take mitigative steps to ensure they
do not compromise system safety, before we can use LEC-based schedulability analysis
in safety-critical systems. We point out that classification errors are of two kinds:
1. A false negative, with a schedulable system incorrectly classified as being

unschedulable; or
2. A false positive, whereby an unschedulable system is classified as being

schedulable.
Below we discuss the implications of each kind of error.

3.2 The problem with False Positives

We saw above that LECs for schedulability analysis are, while effective, liable to
making occasional mis-classifications – both false negatives and false positives. A
false negative may result in a schedulable system being needlessly rejected as being
unschedulable, but this is a necessary consequence of using Deep Learning: DL, by its
very nature, solves problems approximately rather than exactly. However, false positives
present a safety hazard since a potentially unschedulable system is misidentified as
being schedulable. Though the number of false-positives for our binary classifiers were
low (of the systems of 4 tasks that we generated, 1.8% were incorrectly deemed DM
schedulable and 2.1% EDF schedulable), the only acceptable rate for safety-critical
systems is zero and so we must be able to eliminate all false positives if we are to use
DL for schedulability-analysis for safety-critical systems.

To eliminate the possibility of false positives, we propose that when DL-based
components are used for schedulability-analysis and declare a system to be schedulable,
they be additionally required to generate a justification for this decision in the form of
a certificate . Note that the certificate itself may serve as both a declaration, and a
justification, of schedulability — it should not be necessary to execute separate networks
to produce a classification and a certificate. We require that this certificate must be

3A detailed description of the training process and experiments conducted is provided in Section 4.

7

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

efficiently verifiable by a (different) algorithm that is based on ‘traditional’ algorithmic
techniques in that it does not make use of Deep Learning and related AI techniques; it
is only if this verification algorithm agrees that the certificate validates schedulability
do we deem the system specifications to have passed the schedulability-analysis test.

This proposed enhanced framework for DL-based schedulability analysis is depicted
in Figure 3.

System
Specification

“Is the system schedulable?”

Learning-Enabled

Component (LEC)

Yes + certificate

No

Verification
Algorithm

Yes

No

Can validate certificate

Cannot validate certificate

Fig. 3 A Framework for LEC-based Safety Verification. The LEC must additionally generate a
certificate for any system determined to be schedulable; this certificate should be efficiently verifiable
by the verification algorithm.

3.3 Choosing Suitable Certificates

Our proposed framework for DL-based schedulability analysis (depicted in Figure 3)
requires that the LEC generate a certificate for systems it classifies as schedulable. But
what should this certificate look like? To understand this, let us separately consider
each of the two schedulability-analysis problems for which we have developed LECs as
discussed in Section 3.1.

FP schedulability. Recall, from Section 2, that task system Γ is FP-schedulable
if and only if there is a value of Ri no larger than Di satisfying Recurrence (1) for
each τi ∈ Γ. A certificate for the FP-schedulability of task system Γ could simply be
such values for Ri, one per task in Γ; given such a certificate, the module labeled
verification algorithm in Figure 3 can clearly efficiently verify that for each τi ∈ Γ,
the provided value of Ri does indeed satisfy Recurrence (1) and is ≤ Di.

To investigate whether we could get LECs to generate such certificates, we trained
an alternative set of MLPs to predict the Ri values via regression, rather than simply
(as in our initial strawman approach) providing a binary classification. The network for
doing so contains 4 fully-connected hidden layers, each with 30 neurons (more details
are provided in Section 4). A task system is deemed to be FP-schedulable if these
predicted Ri values are each ≤ the corresponding Di values; we again plot the predictive
accuracy in Figure 4 (a). Note that the predictive accuracy in this plot is generally
lower than in the corresponding plot for the binary (schedulable/ unschedulable)
classifier (Figure 2 (a)); it is, however, not unacceptably low in light of the fact (also
stated earlier) that we are reconciled to approximate, rather than exact, solutions from
DL. Furthermore in this case, we can validate claims of schedulability by having a
verification algorithm check that the certificates generated by the MLP do indeed satisfy
the corresponding response-time equations (Recurrence (1)) – we plot the accuracy
post-validation in Figure 4 (b). Note that, although accuracy overall decreases slightly
with verification (from 85.1% to 82.7%), unsafe false positives are eliminated entirely.

8

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

s p
er

 1
03

Overall Accuracy
True Positive Rate
False Positives

(a) Unverified schedulability (overall acc.: 85.1%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

s p
er

 1
03

Overall Accuracy
True Positive Rate
False Positives

(b) Verified schedulability (overall acc.: 82.7%)

Fig. 4 FP schedulability with certificates for sets of 4 tasks. Note the different scale of the right-side
y-axes for false positives. Overall (i.e., summing across all utilizations), 74.1% of schedulable systems
were verifiably identified as being such.

EDF schedulability. Let us now turn our attention to EDF schedulability: what
should the certificates to be generated by the LEC be? An examination of the EDF
schedulability-analysis condition reveals that Expression (3)

(∑
τi∈Γ dbfi(t) ≤ t

)
is

required to hold for all values of t in the testing set T(Γ). And since T(Γ) may contain
exponentially many distinct values of t, a certificate enumerating all elements of
T(Γ) would require that the module labeled verification algorithm in Figure 3
take exponential time to verify the veracity of this certificate, thereby negating the
very purpose of using LEC’s to speed up schedulability-analysis. Thus the idea that
worked above for FP-schedulability, of having the LEC generate a certificate that
can be used by the verification algorithm for validating the associated schedulability
condition (Recurrence (1)) appears to not be applicable for EDF-schedulability. Indeed,
we were unable to instantiate the framework of Figure 3 to become applicable for
EDF-schedulability ; in Section 3.4 below we show that it follows from computational
complexity theory [11, 12] that we are unlikely to be able to do so.

3.4 The applicability of the proposed framework

Let us examine the framework of Figure 3 a bit more closely. Recall that our goal
in using DL for schedulability analysis is to obtain greater run-time efficiency: we
want to be able to make schedulability-analysis decisions faster than could be done
using traditional schedulability-analysis algorithms. Now, there is a lot of excellent
research on how one should implement LECs (particularly DNN-based ones) to have
efficient (and predictable) running times (see, e.g., [13–15] – this list is by no means
exhaustive); we expect that one can use the results of this research to obtain very
efficient implementations of the LEC in Figure 3 (indeed, we demonstrate examples
of this in Section 4). That leaves the verifier of Figure 3: we want this, too, to be
implemented in an efficient manner. We argue that it is reasonable to require that
this verifier should have running time no worse than a (low-order) polynomial in the
size of the task system whose schedulability is being determined. This requirement

9

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

immediately relates the applicability of the framework of Figure 3 to well-studied
concepts in computational complexity theory [11, 12], in particular, the complexity
class NP – “NP is the class of [problems] that can be verified by a polynomial-time
algorithm.” [16, p. 1058]. Hence the requirement that the certificate be verifiable in
polynomial time implies that the framework is applicable to schedulability-analysis
problems that are in NP; this is formally stated in the following proposition:
Proposition 1. Restricting that the module labeled “verification algorithm” in
Figure 3 have no worse than polynomial running time, it is necessary and sufficient for
a schedulability condition to belong to the complexity class NP in order for it to be
checkable using the framework of Figure 3.

Hence, in order to determine whether a schedulability-analysis problem can be
verified using DL through the framework presented in Figure 3 or not, it is necessary
to demonstrate its membership (or non-membership, respectively) in the complexity
class NP. To prove that a schedulability-analysis problem belongs to NP, one must
furnish a polynomial-time verification algorithm for the problem. However, how can
one demonstrate its non-membership in NP? In this case, established results from
computational complexity theory come into play. There exist various complexity classes
(a few are depicted in Figure 5) that are very widely believed to be distinct from NP,
meaning they contain problems ̸∈ NP. Recall from computational complexity theory
that a problem is considered hard for a complexity class if it is, in an intuitive sense, at
least as computationally difficult to solve as every other problem within that class (or
more precisely, every problem in the complexity class can be polynomial-time reduced
to this hard problem). Thus, showing a schedulability-analysis problem to be hard (or
complete) for any complexity class believed to be distinct from NP (such as coNP)
provides substantial evidence that it is not a member of NP.

The conclusions we had drawn from first principles in Section 3.3, that FP-
schedulability analysis fits the framework of Figure 3 whereas EDF-schedulability
analysis does not, follow directly from Proposition 1: as stated in Section 2, FP-
schedulability analysis is NP-complete [5] and therefore in NP; EDF-schedulability
analysis, however, is coNP-complete [9] and therefore not in NP (assuming the
widely-believed conjecture that NP ̸= coNP – see Figure 5).

4 Evaluation

In this section we describe and discuss the experiments that we have conducted for
evaluating, from various perspectives (including predictive accuracy and run-time
implementation overhead, as well as the possibility of FPGA implementation), the
effectiveness of DL-based solutions for preemptive uniprocessor FP-schedulability anal-
ysis. Our choice of uniprocessor FP schedulability-analysis as the problem upon which
to illustrate our approach merits some explanation: despite the inherent intractabil-
ity (NP-hardness) of the problem, superbly engineered implementations of RTA do
exist that are very efficient in practice upon most problem instances and hence this
is perhaps not the problem that first comes to mind as needing faster algorithms.
We have nevertheless chosen FP-schedulability analysis as the problem upon which
to illustrate our approach for primarily pedantic reasons – this is a problem that

10

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

P
NP

NP-C

coNP

coNP-C

NPNP

=

ΣP
2

ΣP
2-C

coNPNP

=

ΠP
2

ΠP
2-C

PNP = ∆P
2

PH
.
.
.

PSPACE

.

.

.

Fig. 5 Some common complexity classes, with NP marked in red. It is widely believed that no region
in this diagram is empty – each is populated with problems.

is very well known by most of the real-time computing community and hence our
target reader can focus on the conceptual framework without needing to constantly
remind themselves of minutiae about the problem being solved. Additionally, focusing
on FP-schedulability allows us to draw a contrast with EDF-schedulability, another
commonly-studied schedulability-analysis problem that is often compared and con-
trasted with FP-schedulability analysis — see, e.g., [17], and which, by Proposition (1),
cannot be solved using our DL-based framework (since it is coNP-hard).

4.1 Generating Synthetic Workloads

We build individual DNN models for FP-schedulability analysis of systems of 2 to 20
tasks. As training data, we generate one million synthetic task sets for each system
size considered, as follows. We consider utilizations from 0.1 to 1.0 in steps of 0.1; for
each utilization, we generate 105 sets of tasks. For each set, the utilization Ui of each
task τi is assigned according to the UUniSort algorithm [18]. Task periods Ti are then
assigned uniformly4 in the range 1–1000, and workloads Ci are characterized according
to Ci = Ui · Ti. As we are considering schedulability of constrained-deadline tasks, we
assign deadlines uniformly in the range [Ci, Ti]; tasks are then sorted in ascending
order of deadline to reflect DM prioritization.

For each task system, we use RTA [6–8] to find the smallest value of Ri that satisfies
Recurrence (1) for each task. This response time is then checked against the deadline;
if Ri ≤ Di for every task, the task set is deemed FP schedulable.

To support a proof of concept for EDF schedulability, we also perform processor
demand analysis for sets of 4 tasks. Those for which Condition (3) is satisfied for all
points in the testing set are deemed EDF schedulable.

4Although Emberson et al. [19] recommend a log-uniform distribution to reflect realistic task sets, we
have opted for a uniform distribution to provide even coverage of the input space for training purposes.

11

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

To test how well our models generalize to similar synthetic tasksets, we generate as
test data an additional million synthetic task sets using the same methodology (but a
different random seed) for each task system size considered (2 to 20 tasks).

4.2 Evaluating Binary Classification

We begin with an evaluation of LEC-based schedulability analysis according to the
framework in Figure 1.5 To do so, we train a collection of simple multilayer perceptron
(MLP) models to classify task systems as FP-schedulable or unschedulable. Each model
accepts as its input the parameters of a constant number of tasks; we train models for
systems of 2–20 tasks.

Training Methodology.

For each task set size considered, we construct an MLP using PyTorch [20] with the
architectural template depicted in Figure 6. As inputs, the model takes the execution
time Ci, period Ti, and deadline Di of each task τi, with tasks sorted in ascending
priority order. We observe that the demand bound function used in processor demand
analysis (Equation (2)), as well as the recurrence expression used for response-time
analysis (Equation (1)), both have the task period in the denominator of a term. We
therefore also include 1/Ti as an input to the model. The network consists of 2 fully-
connected hidden layers of 15 neurons that use rectified linear (ReLU) activation
functions. The output layer has a single node using a sigmoid activation function. If
the output value is >0.5, the set of tasks is classified as Schedulable; otherwise it is
Unschedulable.

…

x15

…

x15

C1

T1

1/T1

D1

𝛕1

…

𝛕n

SCHEDULABLE

UNSCHEDULABLE

Fig. 6 MLP for binary classification of schedulability.

Each model is trained using the corresponding million sets of tasks generated as
training data, using an 80%/20% training/validation split. Input data is shuffled, then
fed in batches of size 1000. Training is performed over 100 epochs, stopping early if

5Recall that this framework does not guarantee an absence of false positives, and is therefore not
recommended for use for safety-critical purposes. We evaluated this framework initially primarily to investigate
whether it is even possible to use DL to recognize schedulable systems.

12

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

no improvement in the validation data is observed for 10 epochs. We use the Adam
optimizer [21] with a learning rate of 0.001 and a weight decay of 0.0001.

Observations.

We have previously presented the results for 4-task systems (Figure 2 (a)); results for
other system sizes are summarized in Figure 7 in the form of a plot of the overall
accuracy as a function of system size. We observe that, while accuracy degrades slightly
as the number of tasks increases, it remains above 92% even for 20-task systems. A
95% confidence interval obtained via nonparametric bootstrapping by resampling 1000
times remains within 0.06% of the accuracy, and is therefore too narrow to visualize in
the plot.

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Overall Accuracy
True Positive Rate
True Negative Rate

Fig. 7 Accuracy of binary classification for FP-schedulability.

4.3 Evaluating the Framework of Figure 3

We now describe our exploration of verifiable LEC-based schedulability analysis
according to the framework in Figure 3.

Training Methodology.

For each taskset size considered, we construct an MLP with the model architecture
shown in Figure 8. This model differs from the binary classifier (Figure 6) in some
crucial ways. The model for predicting schedulability of n tasks (again sorted in priority
order) outputs a set of predicted response times R′

i for 2 ≤ i ≤ n (R1 is not predicted
by the model, as it can be trivially computed as R1 = C1). The task system is then
classified Schedulable if for each task τi, R

′
i ≤ Di; the result is then verified by

checking whether every predicted value R′
i satisfies Recurrence (1). Four key insights

guide the training methodology:

13

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

…

x30

…

x30

C1

T1

1/T1

𝛕1

…

𝛕n

…

x30
…

x30

…

R2

R3

Rn

Fig. 8 MLP for computing Ri’s (response times)

1. This model extracts more information. Because we are asking our model to estimate
response times, rather than simply perform a binary classification, the network
needs to be more complex. In this case, we use 4 fully-connected hidden layers of 30
neurons each (each hidden neuron, as well as the outputs, use a ReLU activation
function).

2. Response times are independent of deadlines. The recurrence relation used to
calculate the response time of a task does not depend on the deadline of that task.
Therefore, deadlines Di are not provided as inputs to the model.

3. Predicted response times should not be too large. This is obvious; a prediction that
is too large might exceed the deadline for an otherwise schedulable task. We want
the response times to be as small as possible, but

4. Predicted response times should not be less than the true value. A predicted response
time that is too large might still satisfy the recurrence, and might still be less than
the constrained deadline of the task. However, a prediction that is too small will
never satisfy the recurrence.
With these last two insights in mind, we devise a training strategy using a custom

loss function:

L =

(

R′
i−Ri

Ri

)2

if R′
i ≥ Ri(

w · R′
i−Ri

Ri

)2

if R′
i < Ri

(4)

This function computes the normalized mean squared error, but applies an additional
weighting term w to negative error values (where a weight w=1 makes this equivalent
to the normalized mean squared error). This has the desired effect of rewarding
predictions that are close to the true value, while more heavily penalizing predictions
that undershoot the true value. Training batch loss is computed as the mean over
individual input losses.

Our training methodology is the same as that of the binary classifier described in
Section 4.2. To decide what value to assign to our penalty term w, we first train 10
networks, each for sets of 3 tasks, using values of w distributed in log-uniform fashion
from 1–1000.

14

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

100 101 102 103

Weight w for Negative Errors

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Fig. 9 Determining the appropriate value of w (see Section 4.3)

Once trained, we evaluate the accuracy of each model — a prediction is considered
accurate if (i) each predicted value of R′

i satisfies Recurrence (1), and (ii) the model
correctly classifies the task set as Schedulable or Unschedulable. We plot the
accuracy of each model over the 106 task sets that comprise our test data in Figure 9,
observing that w=100 performs the best. We then scale this approach, training models
for systems comprising 2–20 tasks with w fixed at 100.

Metrics for evaluation.

We evaluate our framework according to three different metrics:
1. Predictive accuracy, i.e., the rate at which classification of a set of tasks as Schedu-

lable or Unschedulable is both correct and verifiable (i.e., the predicted values
R′

i satisfy the recurrence); or
2. Acceptance rate, i.e., the percentage of Schedulable tasks that are classified as

such. This is equivalent to the sensitivity of the test, or its true positive rate.
3. False positives, i.e., the number of task systems that are incorrectly classified as

Schedulable.
While predictive accuracy is the metric by which many Machine Learning models are
judged, real-time systems developers are likely more interested in finding schedulable
systems as often as possible — correct identification of Unschedulable task sets
may not be as meaningful. However, as we have stressed, incorrectly identifying
unschedulable task sets as Schedulable presents a safety hazard.

Observations.

We evaluate the models that were trained using a fixed penalty weight w=100. For
each, we compare the above-listed evaluation metrics (predictive accuracy, acceptance
rate, and number of false positives) when the predicted values R′

i are used to classify
schedulability, and when these predictions are additionally verified. We have previously
plotted unverified and verified schedulability as a function of system utilization for

15

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

4-task systems (Figure 4); these metrics for task systems of 2–20 tasks are summarized
in Figure 10. Figures 10 (a) and (b) plot unverified and verified schedulability as a
function of system size. As expected, predictive accuracy degrades with verification
(though it remains above 72.1% for systems of up to 20 tasks); however false positives
that may compromise safety are eliminated. Moreover, although accuracy degrades
slightly as new tasks are added,6 this approach nonetheless identifies and verifies well
over half of the Schedulable task systems even for systems of as many as 20 tasks.
As before, we obtain 95% confidence intervals via nonparametric bootstrapping by
resampling 1000 times; these are shown as a shaded region around each series, although
they are too narrow to easily visualize for overall accuracy and acceptance rate.

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

0.0

0.4

0.8

1.2

1.6

2.0

Fa
lse

 P
os

iti
ve

s p
er

 1
04

Overall Accuracy
Acceptance Rate
False Positives

(a) Unverified schedulability.

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 P
os

iti
ve

s p
er

 1
04

Overall Accuracy
Acceptance Rate
False Positives

(b) Verified schedulability.

Fig. 10 Evaluation metrics, plotted as a function of system size, of MLPs for computing response
times. Note the different scale of the right-side y-axes for false positives.

4.4 Generalizing to Different Task Parameters

We have shown so far that our MLP (Figure 8) performs well at correctly and verifiably
identifying schedulable task sets when provided with test data generated using the same
parameters as the training data. However, growing evidence suggests that many Machine
Learning models do not generalize well to real-world scenarios that differ from their
training [22]. Generality is of particular concern for our framework, especially because
sets of tasks in real-world applications do not often display the uniform properties
displayed in our training data [19, 23].

To evaluate our model’s ability to generalize when transferred to new scenarios, we
generated alternative sets of tasks using different parameters. This time, to avoid having
each task set’s total utilization reflected in our training data, we used utilizations from
0.05 to 0.95 in steps of 0.1, generating 105 task sets for each value. For added realism,

6This makes sense, as the number of input features and values predicted increases, despite the number and
size of the hidden layers remaining constant. We defer to future work the question of how much to grow the
network, either by adding layers or adding nodes to existing layers, to maintain accuracy as tasks are added.

16

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

we selected periods from a log-uniform distribution per [19], instead of the uniform
distribution in the training data.

We evaluated our LEC on sets of 4 tasks thus generated; results are illustrated in
Figure 11. Overall accuracy after verification was 66.1%. This is 0.80× the verified
accuracy when applied to test data generated with the same parameters as the training
data, demonstrating that our model generalizes reasonably well.

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 R

at
e

Overall Accuracy
Acceptance Rate

Fig. 11 FP schedulability with certificates, when generalizing to sets of 4 tasks generated per
Section 4.4.

4.5 Execution Time Performance

Since many of our target applications are embedded systems, we have implemented
our framework on select commonly-used embedded computing platforms and measured
the execution duration to check whether these are acceptable for on-line use; we now
report on these experiments.

Experimental Setup.

We generate task systems using the parameters described in Section 3.1, but this time
we produce 1000 sets of tasks at each utilization for each number of tasks considered
(3–20, for a total of 180 000 task sets).

We serialize our trained NN models to load them into a C++ program that is
linked against PyTorch’s compiled libtorch library module. Our program performs
inference on a single set of tasks at a time, after which the predicted response times
are verified and checked against task deadlines to determine schedulability. Prior to
running inference over each group of 1000 task sets, we allow the corresponding model
20 “warm-up” iterations. To compare our LEC framework against an exact analysis, in
the same program we also also implement the algorithm of Audsley et al. [24] to solve

17

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

4 8 12 16 20
Number of Tasks

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(
s)

Inference
Verification

(a) Atom: Mean Times.

4 8 12 16 20
Number of Tasks

0

200

400

600

800

1000

Ex
ec

ut
io

n
Ti

m
e

(
s)

Inference
Verification

(b) Atom: Max Times.

4 8 12 16 20
Number of Tasks

0

50

100

150

200

250

300

350

Ex
ec

ut
io

n
Ti

m
e

(
s)

Inference
Verification

(c) RPi4: Mean Times.

4 8 12 16 20
Number of Tasks

0

100

200

300

400

500

600

Ex
ec

ut
io

n
Ti

m
e

(
s)

Inference
Verification

(d) RPi4: Max Times.

Fig. 12 Execution time statistics for LEC framework.

the recurrence expression for response-time analysis in Equation (2). Our program is
compiled with GCC using optimization level -O3.

We measure execution times on two platforms (both with CPU throttling disabled):
1. Atom is a WinSystems EBC-C413 industrial single-board computer with an Intel

Atom E3845 (x86 64) 4-core CPU and 8GB of RAM, running at 1.92GHz with
Linux 5.15.0;

2. RPi4 is a Raspberry Pi 4 Model B, which has a Broadcom BCM2711 64-bit SoC
with a Cortex-A72 (ARM v8) 4-core CPU and 4GB of RAM, running at 1.80GHz
with Linux 5.15.16.

Results and Discussion.

We calculate the mean and maximum execution times across the 10 000 sets of tasks
tested for each taskset size. Results for the LEC framework are plotted in Figure 12,
and for exact response time analysis are plotted in Figure 13, from which several
observations about our DL-based approach arise:
1. It is efficient. On the Atom, inference runs in under 620 µs and verification in

under 11 µs, on average. The Rpi4 is even more efficient, running inference and
verification respectively in under 345 µs and 4.2 µs on average.

18

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

4 8 12 16 20
Number of Tasks

0

10

20

30

40

50

Ex
ec

ut
io

n
Ti

m
e

(
s)

(a) Atom: Mean Times.

4 8 12 16 20
Number of Tasks

0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(b) Atom: Max Times.

4 8 12 16 20
Number of Tasks

0

5

10

15

20

Ex
ec

ut
io

n
Ti

m
e

(
s)

(c) RPi4: Mean Times.

4 8 12 16 20
Number of Tasks

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(d) RPi4: Max Times.

Fig. 13 Execution time statistics for response time analysis.

2. It is predictable. The maximum observed execution times for the LEC framework
remained under 986 µs on the Atom and under 629 µs on the Rpi4. For each
number of tasks considered, the maximum across the 10 000 tested task sets did
not exceed 1.8× the mean on either platform. In contrast, exact response-time
analysis was observed to take nearly 70 ms on the Atom and 25 ms on the Rpi4
in the worst-case, which is over 1000× slower than the mean. This predictability
makes a verifiable DL-based approach more suitable for online task admission, where
overheads must remain bounded to maintain timeliness.

3. It scales well with system size. As the number of tasks increases, the execution
time trends upwards only slightly. As Figure 8 illustrates, the number of inputs
to and outputs from each model increase with the number of tasks, but these
extra calculations are dominated by the number of neurons (120 total) in the
fully-connected hidden layers.

While PyTorch provides an elegant framework for training models, and libtorch

is a convenient way to wrap model inference into efficient C++ programs, it incurs
significant overhead [25]. We therefore investigate whether we can achieve faster
performance when deploying our MLP to an FPGA hardware accelerator.

19

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

4.6 FPGA Implementation

The rapid recent increase in size and complexity of NNs has spurred interest in per-
forming DNN inference on specially-deployed FPGA kernels [26], often achieving
highly-predictable execution times [14, 27]. This motivates us to evaluate the per-
formance of our verifiable MLP for predicting response times when synthesized for
execution on an FPGA.

Experimental Setup.

In this work, we select the AMD Xilinx XC7K325T FPGA which is deployed in real-
world embedded applications, such as high-altitude balloon instruments for gamma ray
detection [28, 29]. Its low power requirements make it suitable for the sorts of embedded
environments where predictable schedulability analysis is likely to be most useful.

We implement our MLP illustrated in Figure 8 using high-level synthesis (HLS) in
Vitis version 2024.1. We use hand-written and optimized matrix-multiply functions to
implement the multiply-accumulate logic representing the linear layers, and a function
to synthesize the comparators that represent each ReLU. Weights and biases are
expressed as 32-bit floating-point values. The HLS code is written in C++ and uses
preprocessor directives to provide a template for different model sizes based on the
number of tasks. Dataflow pipelining enables multiple circuits to execute portions of
the computation in parallel, reducing end-to-end latency.

Results and Discussion

We synthesize the kernel for task sets of size 3–20 and use the Vitis HLS emulation
tools to profile its latency and area usage. Results are plotted in Figure 14, from which
several observations arise:
1. It is efficient. In Figure 14 (a), we plot the execution times associated with each

number of tasks. The total inference time, including transferring data from the host
to the FPGA (task parameters) and back to the host (response times), remains
below 4 µs for up to 20 tasks, two orders of magnitude faster than for the Atom
and RPi4. It is also more than 5× faster than even the average-case execution time
of exact response time analysis on the RPi4, and nearly three orders of magnitude
faster than the worst-case.

2. Execution times scale linearly. As Figure 8 illustrates, the size of the MLP’s input
and output layers scale linearly with the number of tasks; the execution times of
associated matrix-vector multiplies therefore scale quadratically. However, as shown
in Figure 14 (a), the parallelism achieved by our synthesized FPGA logic enables
roughly linear scaling of execution times. The piecewise linear trend exhibited by
the relationship between inference latency and problem size is explained by the
pipelined nature of the FPGA logic. Inference can begin as data is still transferring
onto the chip, meaning that growth in different parts of the circuit dominate the
change in latency as the number of tasks increases.

3. Area scales linearly. An FPGA provides a set amount of utilizable resources, which
defines the area over which logic can be synthesized. To implement the parallelism
necessary to achieve execution times linear in the number of tasks, we have to also

20

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

(
s)

Inference

(a) Execution Times.

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

4.0

4.4

4.8

5.2

5.6

6.0

Re
so

ur
ce

 U
til

iza
tio

n

0.45

0.49

0.54

0.58

0.63

0.67

Re
so

ur
ce

 U
til

iza
tio

n
(%

)

(b) BRAM Utilization.

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

7.7

7.8

7.8

7.9

7.9

8.0

Re
so

ur
ce

 U
til

iza
tio

n
(×

10
4)

19.0

19.1

19.2

19.3

19.4

19.5

Re
so

ur
ce

 U
til

iza
tio

n
(%

)

(c) FF Utilization.

0 2 4 6 8 10 12 14 16 18 20
Number of Tasks

10.0

10.2

10.3

10.4

10.6

10.7

Re
so

ur
ce

 U
til

iza
tio

n
(×

10
4)

49.2

49.9

50.5

51.2

51.9

52.5

Re
so

ur
ce

 U
til

iza
tio

n
(%

)

(d) LUT Utilization.

Fig. 14 FPGA speed and area statistics.

increase the area of the synthesized logic as the number of tasks grow. Figures 14 (b)–
(d) show counts and overall percentage of block RAM (BRAM), flip flop (FF), and
lookup table (LUT) resources used. Note that although BRAM cells utilized are
expected to scale roughly linearly with the number of tasks, the synthesis tools
group these into blocks which are often allocated in sets of 2; hence, the jump
from 4–6 BRAM blocks. Not shown is the percentage of multiply-accumulate digital
signal processor (DSP) slices used, which remained a constant 750 (89%).
These results indicate that the straightforward and predictable logic of our MLP

model makes it amenable to deployment on an embedded FPGA. Utilization of BRAM
and FF resources remains low, though LUT utilization exceeds 50% for sets of 20
tasks, and DSP utilization is a constant 89%. To allow simultaneous deployment of
other logic — an embedded platform that includes an FPGA accelerator might need
it for other applications as well — might therefore require reducing the LUT and
DSP area required. Techniques exist to tune and optimize based on speed and area
tradeoffs [29–31], but these are outside the scope of our proof-of-concept.

21

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

5 Context and Conclusions

Schedulability analysis is often computationally very expensive; in this manuscript,
we have reported on our efforts at using deep learning to speed it up. We have
found that it seems feasible to train even simple DL network architectures such as
multilayer perceptrons (MLPs) to accurately classify system specifications as being
either schedulable or unschedulable: despite not being experts in DL and without
inordinate effort, we were able to train MLPs to do preemptive uniprocessor EDF and
FP schedulability classification at accuracy rates above 92% for task systems with as
many as 20 tasks.

Since misclassifying an unschedulable system as schedulable represents a safety
hazard, we have proposed a framework (Figure 3) for DL-based schedulability analysis
that detects all such classification errors. We have formally established that this
framework is applicable for speeding up exactly those schedulability analysis problems
that lie within the complexity class NP; we have demonstrated this applicability for
the NP-complete FP-schedulability analysis problem and have concluded that the
framework cannot be instantiated directly for EDF since EDF schedulability analysis
is coNP-complete [9] and therefore likely ̸∈ NP. We have extensively evaluated our
FP-schedulability analysis implementations on synthetically generated workloads; the
results are very encouraging and point to the potential and promise of using DL for
doing schedulability analysis.

3 4 5 6 7 8 9 10
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Overall Accuracy
True Positive Rate
True Negative Rate

(a) Unverified schedulability.

3 4 5 6 7 8 9 10
Number of Tasks

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Overall Accuracy
True Positive Rate
True Negative Rate

(b) Verified schedulability.

Fig. 15 Preliminary results for multiprocessor partitioned DM schedulability on sets of 3–10 tasks.
We train an MLP with three hidden layers of 50 nodes that takes the task parameters as inputs
and partitions the tasks amongst two processors, using our MLPs for uniprocessor FP-schedulability
analysis (that are described in Section 4.3) to verify the FP-schedulability of each partition. Verified
accuracy remains above 64% while the acceptance rate (i.e., the proportion of schedulable task sets
verifiably identified) remains above 49%.

22

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Other schedulability-analysis problems.

As mentioned at the start of Section 4, our choice to use the relatively simple problem
of uniprocessor FP schedulability-analysis as our running example is driven by our
intent to make it easier for our target audience to follow along with minimal effort.
The computational complexity of very many other schedulability-analysis problems
are known;7 those that are in NP can be implemented in our framework, whereas
those that are hard for classes unlikely to be contained in NP cannot. For instance,
we see from [32, Fig. 2] that partitioned FP schedulability-analysis of constrained-
deadline sporadic task systems is in NP and hence implementable within our framework,
whereas partitioned FP schedulability-analysis of constrained-deadline periodic task
systems is unlikely to fit our framework since it lies at or above the second level of
the Polynomial Hierarchy [33] (and hence unlikely to be in NP under the widely-held
assumption that the Polynomial Hierarchy has > 2 levels). It is similarly known that
many multiprocessor DAG-scheduling problems are in NP, and hence implementable
within our framework (the associated certificates of schedulability could be processor
assignments and/ or preemption instants).

Incorporating improved DL techniques.

In closing, we reiterate a point we had made in Section 1 and reëmphasize the
proof-of-principle nature of our study: we seek to establish a framework for applying
DL to solve schedulability-analysis problems. Accordingly, we have devoted much
of our efforts at formulating, and rigorously characterizing the applicability of, this
framework. Although prior work has applied DL to such problems —a survey of such
work is available in [34]— ours is the first, to our knowledge, that uses complexity
theory to formalize the set of problems that can be solved by DL while guaranteeing
efficient elimination of unsafe false positives. We believe that developing the ‘best’ DL
systems for any particular schedulability analysis problem for which our framework is
applicable requires collaboration with experts in DL and does not fall within the scope
of the ideas that we are presenting in this paper, and leave as future work a detailed
incorporation of the latest findings in DL into our framework. As an illustration of
such possible incorporation in the future, we point out that we have also instantiated
our framework for partitioned FP scheduling of constrained-deadline sporadic task
systems upon multiprocessor platforms (as mentioned above, shown [32, Fig. 2] to
be NP-complete) – some preliminary results are plotted in Figure 15. A very recent
work [35] reported success in training Graph Attention Networks to partition implicit-
deadline sporadic task systems (task systems in which Di = Ti for all tasks τi) for
FP-scheduling upon multiprocessors. We plan to explore the feasibility of extending [35]
to the partitioning of constrained-deadline task systems; if successful we could, in
principle, easily replace our multilayer perceptron (MLP) with such a Graph Attention
Network and thereby seamlessly incorporate this advance in Deep Learning into our
framework, and thereby obtain a partitioned FP-schedulability analysis algorithm that

7E.g., [32, p. 366] provides, in tabular form, a comprehensive summary of the computational complexity
of schedulability-analysis for partitioned EDF and FP scheduling of various variants of periodic and sporadic
task systems upon multiprocessor platforms of different kinds.

23

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

offers superior performance to what is depicted in Figure 15, whilst continuing to
guarantee the absence of false positives.

References

[1] Kawaguchi, K.: Deep learning without poor local minima. In: Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances
in Neural Information Processing Systems, vol. 29. Curran Associates,
Inc., ??? (2016). https://proceedings.neurips.cc/paper files/paper/2016/file/
f2fc990265c712c49d51a18a32b39f0c-Paper.pdf

[2] Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th Real-Time Systems Symposium,
pp. 182–190. IEEE Computer Society Press, Orlando, Florida (1990)

[3] Leung, J.Y.-T., Whitehead, J.: On the complexity of fixed-priority scheduling of
periodic, real-time tasks. Performance Evaluation 2, 237–250 (1982)

[4] Eisenbrand, F., Rothvoss, T.: Static-priority real-time scheduling: Response time
computation is NP-hard. In: Proceedings of the Real-Time Systems Symposium.
IEEE Computer Society Press, Barcelona (2008)

[5] Ekberg, P., Yi, W.: Fixed-priority schedulability of sporadic tasks on
uniprocessors is NP-hard. In: 2017 IEEE Real-Time Systems Sympo-
sium, RTSS 2017, Paris, France, December 5-8, 2017, pp. 139–146. IEEE
Computer Society, ??? (2017). https://doi.org/10.1109/RTSS.2017.00020 .
https://doi.org/10.1109/RTSS.2017.00020

[6] Joseph, M., Pandya, P.: Finding response times in a real-time system. The
Computer Journal 29(5), 390–395 (1986)

[7] Lehoczky, J., Sha, L., Ding, Y.: The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In: Proceedings of the Real-Time
Systems Symposium - 1989, pp. 166–171. IEEE Computer Society Press, Santa
Monica, California, USA (1989)

[8] Wellings, A., Richardson, M., Burns, A., Audsley, N., Tindell, K.: Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal 8, 284–292 (1993)

[9] Eisenbrand, F., Rothvoß, T.: EDF-schedulability of synchronous periodic task
systems is coNP-hard. In: Proceedings of the Annual ACM-SIAM Symposium on
Discrete Algorithms (2010)

[10] Baruah, S., Howell, R., Rosier, L.: Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Systems: The International Journal of Time-Critical Computing 2, 301–324 (1990)

24

https://proceedings.neurips.cc/paper_files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/f2fc990265c712c49d51a18a32b39f0c-Paper.pdf
https://doi.org/10.1109/RTSS.2017.00020

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

[11] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, ??? (1994)

[12] Arora, S., Barak, B.: Computational Complexity - A Mod-
ern Approach. Cambridge University Press, ??? (2009).
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264

[13] Kang, W., Chung, J.: DeepRT: predictable deep learning inference for cyber-
physical systems. Real-Time Systems 55(1), 106–135 (2019) https://doi.org/10.
1007/s11241-018-9314-y

[14] Huang, S., Pearson, C., Nagi, R., Xiong, J., Chen, D., Hwu, W.-m.: Accelerating
sparse deep neural networks on FPGAs. In: 2019 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7 (2019). https://doi.org/10.1109/HPEC.
2019.8916419

[15] Sun, Y., Zheng, L., Wang, Q., Ye, X., Huang, Y., Yao, P., Liao, X., Jin, H.:
Accelerating sparse deep neural network inference using GPU tensor cores. In:
2022 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–7
(2022). https://doi.org/10.1109/HPEC55821.2022.9926300

[16] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.,
4th edn. MIT Press, ??? (2022)

[17] Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, 2nd edn. Springer, ??? (2005)

[18] Bini, E., Buttazzo, G.C.: Measuring the performance of schedulability tests. Real-
Time Syst. 30(1–2), 129–154 (2005) https://doi.org/10.1007/s11241-005-0507-9

[19] Emberson, P., Stafford, R., Davis, R.I.: Techniques for the synthesis of multiproces-
sor tasksets. In: WATERS Workshop at the Euromicro Conference on Real-Time
Systems, pp. 6–11 (2010). 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems ; Conference date: 06-07-2010

[20] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: PyTorch: An imperative style, high-performance deep learning library. In:
Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035 (2019)

[21] Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

[22] Risi, S., Togelius, J.: Increasing generality in machine learning through procedural
content generation. Nature Machine Intelligence 2(8), 428–436 (2020)

[23] Kramer, S., Ziegenbein, D., Hamann, A.: Real world automotive benchmarks for

25

https://doi.org/10.1007/s11241-018-9314-y
https://doi.org/10.1007/s11241-018-9314-y
https://doi.org/10.1109/HPEC.2019.8916419
https://doi.org/10.1109/HPEC.2019.8916419
https://doi.org/10.1109/HPEC55821.2022.9926300
https://doi.org/10.1007/s11241-005-0507-9

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

free. In: 6th International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), vol. 130 (2015)

[24] Audsley, N.C., Burns, A., Richardson, M.F., Wellings, A.J.: Hard real-time schedul-
ing: The deadline-monotonic approach. IFAC Proceedings Volumes 24(2), 127–132
(1991)

[25] Georgiou, S., Kechagia, M., Sharma, T., Sarro, F., Zou, Y.: Green AI: Do deep
learning frameworks have different costs? In: 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), pp. 1082–1094 (2022). https://doi.
org/10.1145/3510003.3510221

[26] Guo, K., Zeng, S., Yu, J., Wang, Y., Yang, H.: [dl] a survey of fpga-based neural
network inference accelerators. ACM Trans. Reconfigurable Technol. Syst. 12(1)
(2019) https://doi.org/10.1145/3289185

[27] Khoda, E.E., Rankin, D., Lima, R.T., Harris, P., Hauck, S., Hsu, S.-C., Kagan, M.,
Loncar, V., Paikara, C., Rao, R., Summers, S., Vernieri, C., Wang, A.: Ultra-low
latency recurrent neural network inference on FPGAs for physics applications
with hls4ml. Machine Learning: Science and Technology 4(2), 025004 (2023)
https://doi.org/10.1088/2632-2153/acc0d7

[28] Sudvarg, M., et al.: Front-End Computational Modeling and Design for the
Antarctic Demonstrator for the Advanced Particle-astrophysics Telescope. In:
Proc. of 38th International Cosmic Ray Conference, vol. 444, pp. 764–17649. Sissa
Medialab, ??? (2023). https://doi.org/10.22323/1.444.0764

[29] Sudvarg, M., Zhao, C., Htet, Y., Konst, M., Lang, T., Song, N., Chamberlain,
R.D., Buhler, J., Buckley, J.H.: Hls taking flight: Toward using high-level synthesis
techniques in a space-borne instrument. In: Proc. of 21st International Conference
on Computing Frontiers. ACM, ??? (2024). https://doi.org/10.1145/3649153.
3649209

[30] Makrani, H.M., Farahmand, F., Sayadi, H., Bondi, S., Dinakarrao, S.P.,
Homayoun, H., Rafatirad, S.: Pyramid: Machine learning framework to
estimate the optimal timing and resource usage of a high-level synthe-
sis design. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pp. 397–403. IEEE Computer Society,
Los Alamitos, CA, USA (2019). https://doi.org/10.1109/FPL.2019.00069 .
https://doi.ieeecomputersociety.org/10.1109/FPL.2019.00069

[31] Zhao, C., Dong, Z., Chen, Y., Zhang, X., Chamberlain, R.D.: Gnnhls: Evaluating
graph neural network inference via high-level synthesis. In: 2023 IEEE 41st
International Conference on Computer Design (ICCD), pp. 574–577 (2023). IEEE

[32] Ekberg, P., Baruah, S.: Partitioned scheduling of recurrent real-time tasks. In:
2021 IEEE Real-Time Systems Symposium (RTSS), pp. 356–367 (2021). https:

26

https://doi.org/10.1145/3510003.3510221
https://doi.org/10.1145/3510003.3510221
https://doi.org/10.1145/3289185
https://doi.org/10.1088/2632-2153/acc0d7
https://doi.org/10.22323/1.444.0764
https://doi.org/10.1145/3649153.3649209
https://doi.org/10.1145/3649153.3649209
https://doi.org/10.1109/FPL.2019.00069
https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/RTSS52674.2021.00040

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

//doi.org/10.1109/RTSS52674.2021.00040

[33] Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3,
1–22 (1976)

[34] Bian, J., Arafat, A.A., Xiong, H., Li, J., Li, L., Chen, H., Wang, J., Dou, D., Guo,
Z.: Machine learning in real-time internet of things (iot) systems: A survey. IEEE
Internet of Things Journal 9(11), 8364–8386 (2022) https://doi.org/10.1109/JIOT.
2022.3161050

[35] Lee, S., Lee, J.: A graph attention network approach to partitioned scheduling in
real-time systems. IEEE Embedded Systems Letters (2024) https://doi.org/10.
1109/LES.2024.3376801

27

https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/RTSS52674.2021.00040
https://doi.org/10.1109/JIOT.2022.3161050
https://doi.org/10.1109/JIOT.2022.3161050
https://doi.org/10.1109/LES.2024.3376801
https://doi.org/10.1109/LES.2024.3376801

	Introduction
	Envisioned use-cases.
	This work.
	Contributions.

	Background: Schedulability Analysis
	The sporadic tasks model BMR90.
	Fixed-Priority (FP).
	Earliest-Deadline First (EDF).

	A Framework for Learning-Enabled Schedulability Analysis
	LECs for schedulability analysis
	The problem with False Positives
	Choosing Suitable Certificates
	The applicability of the proposed framework

	Evaluation
	Generating Synthetic Workloads
	Evaluating Binary Classification
	Training Methodology.
	Observations.

	Evaluating the Framework of Figure 3
	Training Methodology.
	Metrics for evaluation.
	Observations.

	Generalizing to Different Task Parameters
	Execution Time Performance
	Experimental Setup.
	Results and Discussion.

	FPGA Implementation
	Experimental Setup.
	Results and Discussion

	Context and Conclusions
	Other schedulability-analysis problems.
	Incorporating improved DL techniques.

