A Concurrency Framework for Priority-Aware
Intercomponent Requests in CAmKES on selL.4

Marion Sudvarg
Department of Computer Science & Engineering
Washington University in St. Louis
msudvarg @wustl.edu

Abstract—Component-based design can encapsulate and iso-
late state and the operations on it, but timing semantics cross-
cut these boundaries when a real-time task’s control flow spans
multiple components. Under priority-based scheduling, inter-
component control flow should be coupled with priority infor-
mation, so that task execution can be prioritized appropriately
end-to-end. However, the CAmKES component architecture for
the seL.4 microkernel does not adequately support priority prop-
agation across intercomponent requests: component interfaces
are bound to threads that execute at fixed priorities provided
at compile-time in the component specification. In this paper,
we present a new library for CAmKES with a thread model
that supports (1) multiple concurrent requests to the same
component endpoint; (2) propagation and enforcement of priority
metadata, such that those requests are appropriately prioritized;
and (3) implementations of Non-Preemptive Critical Sections, the
Immediate Priority Ceiling Protocol and the Priority Inheritance
Protocol for components encapsulating critical sections of exclu-
sive access to a shared resource. We measure overheads and
blocking times for these new features and use existing theory to
perform schedulability analysis. Evaluations on both Intel x86
and ARM platforms show that our new library allows CAmKES
to provide suitable end-to-end timing for real-time systems.

I. INTRODUCTION

As the complexity of software systems has increased,
component-based software engineering has emerged as a key
approach for providing structure, modularity, and reusability
in system design [1]]. Real-time component frameworks encap-
sulate state, computation, and communication, allowing for
separation of functional concerns and isolation of resource
utilization within components to ensure that timing and other
para-functional properties are enforced both locally and end-
to-end, based on attributes (e.g. priorities and execution times)
and constraints (e.g. deadlines) spanning multiple components.

In particular, CAmKES [2f], which targets the seL4 micro-
kernel [3]], provides a description language for the functional
requirements of a component-based embedded system, and for
static assignment of para-functional attributes such as priorities
to component threads. Such static assignment, however, may
be problematic in systems where real-time task execution
crosses component boundaries: a single component may exe-
cute on behalf of multiple tasks, and by assigning priorities
to components rather than to tasks, CAmKES does not fully
support priority-driven scheduling of multi-component tasks.

To address this limitation, we present a new library for
priority-aware inter-component requests in CAmkKES running

The research presented in this paper was supported in part by NSF grants
CSR-1814739 and CNS-17653503 and NASA grant 80NSSC21K1741.

Chris Gill
Department of Computer Science & Engineering
Washington University in St. Louis
cdgill@wustl.edu

atop seL4, with a concurrency framework that allows multiple
tasks to execute across shared components, while retaining
end-to-end task prioritizationﬂ To do so, we provide a system
model that supports (1) multiple concurrent requests to the
same component procedural interface endpoint; (2) priority
propagation, which couples requests with priority metadata
and ensures that each component thread is prioritized accord-
ing the task for which it executes; and (3) implementations of
Non-Preemptive Critical Sections, Immediate Priority Ceiling
Protocol, and Priority Inheritance Protocol, for components
encapsulating exclusive access to a shared resource. Our con-
currency framework includes new extensions to the CAmKES
specification language, allowing users to easily specify the
desired real-time behavior of a component. The framework
is implemented entirely in userspace, so it can take advantage
of existing formally verified kernel mechanisms in seL4.

The mechanisms our library provides are designed to be
both fast and predictable in execution time. Our protocols
use priority semantics to guarantee consistency over lock
acquisition without additional atomic operations. We measure
the overhead induced by our protocols, and validate that it
is appropriately bounded. We also provide an overview of
how to do schedulability analysis for a component-based task
system specified with our extensions to CAmKES, taking into
account blocking times induced by both library overhead and
shared resource access under our supported protocols. We
demonstrate, through empirical timing measurements of task
sets running on both Intel x86 and ARM hardware platforms,
that our implementation, coupled with this analysis, is suc-
cessful in meeting end-to-end deadlines for cross-component
task execution in real-time systems.

The rest of this paper is organized as follows. Section
surveys background information and related work. Section [III]
presents our task model and associated schedulability analysis
techniques. Section details the design and implementation
of our library. Section [V] presents overhead measurements
and empirical evaluations of synthetic task sets on two dif-
ferent hardware platforms, and schedulability analyses which
incorporate the measured overheads across a broader set of
synthetic task sets; these demonstrate the suitability of our
library for real-time systems. Section [VI] concludes the paper,
and discusses directions for future work.

! Available from https://www.sudvarg.com/priority-aware-camkes


https://www.sudvarg.com/priority-aware-camkes

II. BACKGROUND AND RELATED WORK

CAmKES provides a description language for the function-
ality of a component-based embedded system. It is designed to
incur minimal execution time and memory overhead. CAmkKES
is implemented atop seL4 [3], [4], and allows compile-time
specification of component thread priorities [S]. The seL4
microkernel is a widely used [6f], [7], lightweight, formally-
verified [8]], [9] OS kernel with capability-based access control
to broker all user-level functionality. All kernel pathway worst-
case execution times have been analyzed and bounded [10].
This makes seL4 well-suited for real-time systems, and it is a
natural target for CAmKES, allowing for separation between
components, while providing efficient IPC channels to handle
the explicitly-defined connections between them. In this work,
we provide a framework that expands CAmKES’ support for
real-time task sets executing end-to-end across shared com-
ponents atop the seL4 kernel. We aim to show how real-time
tasks can be mapped to a component model and implemented
in CAmKES and selL4 without changes to selA4’s verified
codebase or existing CAmkKES based application software, thus
allowing easy adoption.

The Component-Integrated ACE ORB (CIAO) [11] [12]
extends and specializes the CORBA Component Model [[13]]
with QoS specifications provided as metadata (separate from
functional specifications). In both CAmkKES and CIAO, RPC
invocations are realized as synchronous IPC between threads
in separate components, though if components are specified
within the same protection domain, both CAmkKES and CIAO
can resolve RPCs between them into direct function calls.

The Patina API [14]] provides priority-aware synchroniza-
tion primitives for shared resource access in seL4. It includes
a mutex service that implements the Priority Inheritance
Protocol; threads obtaining a lock must invoke the service
via an RPC. In contrast, our framework extends the existing
CAmKES design to encapsulate all execution over a shared
resource in its own component, allowing each component to
manage its own priority-based locking protocols. Patina does
not support nested locking; because our framework provides
multiple protocols, nested locking can be achieved via nested
requests among correctly-configured components.

An alternative to inter-thread RPC is thread migration
between protection domains, which some OS kernels enable by
decoupling a thread’s execution context (e.g. register values,
stack, address space, etc.) from its scheduling context (e.g.
priority, resource accounting statistics, temporal reservations,
etc.). In the Mach 3.0 kernel, RPC is realized by having
the requesting thread immediately continue executing in the
context of the server; a partial context switch is needed to
separate execution contexts, but the scheduling context main-
tains continuity across the call [[15]. A similar, efficient thread
migration mechanism was later realized for inter-component
requests in the Composite component-based OS [[16]. These
approaches let end-to-end task execution retain scheduling
semantics across component boundaries, but do not directly
support priority protocols for shared resource access. A migrat-

ing scheduling context must also acquire an execution context
and related resources (e.g. a stack) from the target component’s
scope. It is argued [[17] that access to the allocated stacks
in a component can induce priority inversion, unless each
component allocates a stack for each thread in the system. Be-
cause CAmKES explicitly defines all intercomponent request
paths, our framework is able to allocate threads (and associated
stacks) in a way that avoids such contention.
Capacity-reserve donation (Credo) [18], implemented in
the original L4 microkernel [19], uses scheduling context
migration to propagate priorities with intercomponent requests,
while also supporting shared resource access protocols (in
particular, the Priority Inheritance Protocol [20] and the
Immediate Priority Ceiling Protocol [21]], [22]]). A similar
approach [23]] was later implemented to support the Priority
Inheritance Protocol and bandwidth inheritance [24] in the
NOVA microhypervisor [25]. These approaches, unlike ours,
require the kernel to track the full migration path of the
scheduling context. Ours is a userspace framework, and its
resource access protocol mechanisms require only a single
priority parameter to be passed as part of the request message,
eliminating the need for runtime traversal of request chains.
In contrast to previous work, our implementation enables
user-level propagation of priorities between components and
user-level mechanisms to implement shared resource access
protocols. It does not require kernel-level tracking of complete
request chains, with priority meta-data instead passed as a
single-word parameter as part of the RPC message. This allows
RPC to be realized as synchronous IPC using a thread model
that enables immediate request-passing where appropriate,
while appropriately blocking on access to locked resources.

III. SYSTEM MODEL

In this work, we target an implicit-deadline, sporadic
task system, using fixed-priority, preemptive scheduling on a
uniprocessor. Our system is composed of a set I' of tasks
{m = (C;,T;,p;)} characterized by a worst-case execution
time C; and a minimum interarrival time 7;, and assigned a
priority p;. We assume, for schedulability considerations, that
task execution is nonblocking (except when waiting for a lock
held by another task).

Our target OS platform is the sel.4 microkernel [3|], which
supports fixed-priority preemptive scheduling. The seL.4 ker-
nel, compiled with default settings, schedules threads of the
same priority in round-robin fashion; however, we also con-
sider a version in which the round-robin timeslice is set large
enough that threads will always run to completion unless
preempted by a strictly higher priority thread. In Sections
and [V] respectively, we describe our implementation and eval-
uation of both versions.

We define a mapping from our task system I' to originat-
ing components and sets of component procedure interfaces
(CPIs), described in CAmKES, as follows. First, for each task
7; € I', we define a component c; that we say originates the
task. In CAmKES, that component is specified as active, giving
it an associated thread with priority p; to run the task. Common



oo

Y 1t,, AT, BT, A1, 1T,
il 2T, AT, BT AT, 2T,
L=y 31, Ct,, 31, D1y, 3715

Fig. 1: Tasks {71, 72,73} originate in active components {1,2, 3} respec-
tively. Components 1 and 2 request common functionality in component A
which itself requests B. Component 3 sends a request C, then to one in D.
This defines a decomposition of each task into subtasks.

functionality or resources, shared among multiple tasks, may
be encapsulated behind CPIs within other componentsEl Each
such task 7; is thus decomposed into multiple subtasks: an
initial subtask executing in its originating component c;, with
control flow then passing out of it to zero or more shared CPlIs,
then returning back through the request chain before finally
completing execution in ¢;, as illustrated in Fig. [I] Requests
can be nested and request chains need not be linear: an
originating component or CPI may make multiple subsequent
requests within the control flow of a single job.

Components hosting one or more shared CPIs are realized
in CAmKES by defining them as passive. Explicit connections
— from an originating component or CPI that uses it, to the
CPI — must be defined in CAmKES. Connections are backed
by an underlying endpoint, an seL4 kernel object that enables
RPC calls between threads through synchronous IPC, where
the requesting thread blocks until it receives a reply. Endpoints,
being synchronous, require a sending and receiving thread
to rendezvous. Thus, task execution will be blocked at the
transition between subtasks if no threads in the target CPI are
waiting on the endpoint.

CAmKES components, using the built-in connector types,
establish CPIs as endpoints with a single listening thread that
handles all requests; its priority is specified as an attribute
of the CAmKES configuration. This presents fundamental
incompatibilities with our task model: multiple tasks executing
end-to-end across shared CPIs are not guaranteed to execute
subtasks according to the priority of the task, and may be
blocked from progress if a procedure on its request path
is already executing, even if that execution is for a request
from a task of lower priority. The framework we provide
addresses these problems, providing appropriate priority prop-
agation across CPIs that encapsulate shared functionality and
mechanisms for additional resource access protocols for CPIs
encapsulating exclusive access to shared resources.

To analyze schedulability of our end-to-end task model,
we consider several possibilities under the system model we
have defined, and describe how the existing theory for rate-
monotonic scheduling, including blocking time analysis for
shared resource access protocols, applies to our model.

2Qur system model does not allow an originating component to specify any
CPIs since it is by definition the root of all request chains emanating from it.

Priority Propagation. We say that task 7; originates in active
component ¢; and additionally executes across a set of CPIs
(hosted by passive components) ¢; (of size ||¢;||). The worst-
case overhead for sending a request with a propagated priority
to a CPl is denoted C},_send, and for replying is Cp_yepiy, With
worst case total overhead C), = Cp_send + Cp_repty (measured
in Section M) For a CPI ¢, we denote the worst-case procedure
execution time as C(c). Thus, a task 7; has total WCET:

Ci=Clei)+ Y Cle) + |lé] - G )
CcEE;

Each CPI ¢ has a minimum priority p,;,(c) among tasks
for which it executes, and a maximum priority p,q.(c). A
CPI’s threads wait on its associated endpoint at p,,q.(c);
the blocking time B; induced on a task 7; is therefore
max(Cy_send; Cp_repty) if there exists a CPI for which
Pmin(c) < p; and p; < pmaz(c); otherwise, 7; experiences
no blocking time. Schedulability analysis of task sets where
each task has a unique priority then can be performed using
the Hyperbolic Bound with blocking factors [26]:

Vr, el H <§h+1)<w+1)§2 )

T;
PP SR ‘

A more pessimistic bound, though one that applies to task
sets where multiple tasks may have the same priority, is
presented in (Corollary 17), as a generalization of the
rate-monotonic utilization bound in [27]):

3 % + max <{§}) <n (21/” _ 1) 3)
Ti€{T1,Tn}
Immediate Priority Ceiling Protocol. Our framework allows
a CPI to encapsulate execution of a critical section with the
Immediate Priority Ceiling Protocol (IPCP). Such CPIs have
a worst-case request overhead time C¢ = Ct_sena + Ct_reply-
We introduce a new term, B(c), for the worst-case blocking
time that a CPI ¢ can induce. For a CPI ¢ to which priorities
are propagated, B(c) = max(Cp_send; Cp_reply) as before. For
a CPI c having a fixed priority, e.g. one using IPCP, blocking
time must be computed recursively as the sum of its execution
time and protocol overhead (Cy + C(c)), plus the execution
times and protocol overheads for all CPIs to which it makes
requests. Now, the blocking time B; induced on task 7; is the
maximum worst-case blocking time induced by any CPI:

Bi = max ({B(C) | pmin(c) < Di S pmam(c)}) (4)

IPCP is an improved version of Non-Preemptive Critical
Sections (NPCS), which assigns the maximum system priority
to execution in all critical sections. Under NPCS, then, the
blocking time induced by any CPI becomes:

Bi = maz ({B(¢) | pmin(c) < pi}) Q)

Task WCETs must account for the different overheads, C),
and C/, induced by priority propagation and requests to fixed-
priority CPIs, respectively. We say that a task 7; executes
across a set of fixed-priority CPIs ¢; ; and a set of CPIs that



propagate priority ¢; ,. This results in a new equation for task
WCET, slightly modified from Eqn. [T}

Ci = Cle)+ 3.0 + Il - Cp + sl -C; ©)
cESG;

Schedulability analysis, using Eqns. 2] or 3] can be per-
formed using these new blocking times and WCETs.

Priority Inheritance Protocol. Our framework also sup-
ports CPIs that use the Priority Inheritance Protocol (PIP),
as described in Section [[V] As we show in Section [V} our
mechanism induces protocol overhead that depends on the
number of tasks that execute on the CPI. For such a CPI
¢, we denote this C;(c). Because a task can be blocked for
the duration of multiple critical sections under PIP, CPIs
implementing PIP may induce longer worst-case blocking
times than those using IPCP [20]. However, under PIP, higher-
priority tasks may preempt lock-holders in situations where
this preemption could not happen under IPCP, which may
make PIP attractive for some soft real-time applications.

Our model restricts the nesting of CPIs such that a CPI
implementing PIP can only send requests to CPIs with a fixed
priority ceiling, i.e., IPCP or NPCS; we do not currently
provide a mechanism for nested priority inheritance. The
implementations of the other priority protocols we provide
(priority propagation, IPCP, and NPCS) do not change the pri-
orities of threads executing request procedures, and therefore
can invoke nested requests to CPIs of any type.

IV. DESIGN AND IMPLEMENTATION

The CAmKES framework [5] provides a specification lan-
guage to describe a system as a collection of components and
connections between them. CAmKES generates the necessary
seL4 system calls to create components and IPC described by
a user-provided system specification and component source
code, then compiles everything into an ELF binary packaged
with an seL4 kernel image.

Our goal in this work is to elaborate on the CAmkKES
framework without changes to its underlying parser or the
seL4 kernel. The design and implementation of our ap-
proach provides priority propagation across thread-safe,
reentrant components executing similarly to sequential, non-
componentized versions. We also support several priority-
based locking protocols — including the Immediate Priority
Ceiling Protocol (IPCP), Non-Preemptive Critical Sections
(NPCS), and Priority Inheritance Protocol (PIP) — to provide
synchronization over component-encapsulated shared state.
Component execution is replicated across subtasks and control
flows, with multiple subtasks in a single component, so that
functionality itself need not be replicated. Each component
provides spatial isolation via its own separate address space,
which is shared among its threads’ unique stacks.

Priority Propagation. We first consider CPIs that encapsu-
late reentrant functionality shared among multiple tasks. So
that end-to-end task execution follows the semantics of fixed-
priority, preemptive scheduling as described in Section we
require that task priority propagates with control flow across

ig

Fig. 2: Passive component A is used by active components 1 and 2 so a
pool of 2 threads waits on the underlying endpoint. Component B is used by
component 3, and indirectly by 1 and 2 through A, so it has 3 threads.

request paths. Such a CPI, having an interface tagged with
the “propagated” priority protocol attribute (as described later
in this section), must execute requests at the priority of the
requesting thread, and handle concurrent requests in a pre-
emptive fashion, i.e. a CPI may preempt its own procedure’s
execution if it receives a request from a higher priority task.

To achieve these goals, we give each CPI a pool of threads,
all waiting for requests on the underlying endpoint. To ensure
thread availability whenever a request arrives, the size of the
pool is set equal to the number of possible concurrent requests,
as illustrated in Fig. 2} Because CAmKES provides a static
specification of CPIs and request connections, this value is
straightforward to determine.

Threads wait on the endpoint at the highest priority among
all tasks that use the interface, referred to as its priority
ceiling (PC). This ensures that if a request preempts existing
execution in the CPI on behalf of another request through
the interface, the thread handling the new request will be of
sufficiently high priority to begin execution. Upon receiving
a request, the handling thread immediately sets its priority
to that of the requesting thread, per the priority information
that is passed to it over the endpoint as part of the request
message. It then executes its procedure, running the subtask
at the originating task’s priority. After execution is complete, it
elevates its priority back to its original waiting priority, replies
to the requestor, then goes back to waiting on the endpoint.
By receiving a request and sending the reply at the priority
ceiling of the interface, these transitions between subtasks
are equivalent to critical sections with IPCP semantics (under
traditional fixed-priority preemptive scheduling) and induce
equivalent blocking time as was discussed in Section [ITI]

Shared Resource Access Protocols. CPlIs that encapsulate
exclusive access to a shared resource must provide appropri-
ate priority semantics for the associated critical section. We
assume that each such CPI encapsulates a complete critical
section. Encapsulation of a shared resource for which only
a portion of execution must be locked can be realized with
one or more CPIs propagating priority for reentrant access to
the resource, and other CPIs encapsulating locking semantics
for nonreentrant, exclusive access. Fig. |§| shows how nested
locking (acquiring a second lock while already holding a lock)
can then be achieved through a chain of requests: a CPI
encapsulating one lock can make a request to another CPI
encapsulating the second lock.

It is straightforward to implement NPCS and IPCP. Both
are achieved by tagging an interface with the “fixed” priority
protocol attribute and providing a single listening thread to its



Resource Component

+
c
o .2
==
5u

(V]
Q X
o w

Fig. 3: Active components 1 and 2 send requests to a CPI for Reentrant
Execution that is provided by a passive Resource Component, which also
provides and uses CPIs for exclusive execution protected by Lock A, and
nested locking by Lock B. Lock acquisition ordering is enforced by the defined
connections; an acyclic connection digraph is deadlock free.

endpoint, assigning the thread a priority equal to the priority
ceiling. This wraps the implementation of these protocols
that is provided by both the MCS and non-MCS builds of
the sel4 kernel [28]. NPCS is realized under traditional,
fixed-priority, preemptive scheduling by assigning a CPI the
maximum system priority (255). Once a request is received
by the interface, it cannot be preempted. Under round-robin
scheduling of threads having equal priorities, NPCS comes
with the additional constraint that all tasks (and their orig-
inating components’ threads) are restricted to priorities less
than the maximum. This guarantees that execution in a critical
section is not preempted by a new request, which implies that
two critical sections cannot execute concurrently: one critical
section would necessarily have to begin execution before the
other, and for the second critical section to execute, it would
have to be in response to a request preempting the first.
Because NPCS induces blocking time on all tasks in a
system, the IPCP is typically preferred as an alternative fixed-
priority resource access protocol. As noted in [28], the IPCP is
straightforward to implement by providing an endpoint with a
single thread, assigned a priority equal to the priority ceiling of
the CPI. With only a single thread listening on the endpoint, no
additional lock variable is necessary. The IPCP is, as defined
in , a deadlock avoidant protocol; however, under seL4’s

priority-based round-robin scheduler, deadlocks can occurEl

One solution to this is to assign “fixed” CPIs a priority equal
to PC+1. However, deadlock could still occur if two CPlIs,
each using the IPCP, request the other’s interface; this could
result in a task attempting to acquire a lock it already holds.
To guarantee the absence of deadlock one would have to
ensure that no cycles exist in the digraph of connections. For
a given system specification, CAmKES can generate a digraph
representation in the DOT language [29]; this may be used to
detect cycles, which alert to possible deadlock.

In this work, we do not implement the original Priority
Ceiling Protocol, as described in @] The Immediate Pri-
ority Ceiling Protocol assigns static priorities to component
interfaces; because connections are defined statically in the

3Consider a task, 71, that needs to acquire locks A then B in a nested
fashion. Another task, 72, needs to acquire lock B then A. If 71 and 75 have
priorities equal to the priority ceiling, 71 could be switched out for 7o while
holding A. 72 could then acquire B and proceed to wait on lock A. At this
point, when 71 attempts to obtain lock B, deadlock occurs.

§request

provides int func(int x, int prio)

Endpoint

S ST EE S
2
~(1) Check \

IP (Inherited Priority)

Mark Locked
IP := prio

(2) if (prio > IP) (8)
()

ptr to lock holder’s TCB |v\(10) Register own TCB
(11
(12

(3) IP:=prio
(4) set priority

) Demote to prio

(5) Wait ) Run func(x)

Notification

Manager

l (13) Elevate to HLP
(14) Mark Unlocked —
(6) Wake (15) Signal

— (7) Pop self (16) Reply and Waiti—

Fig. 4: Priority Inheritance Protocol Implementation

CAmKES specification, these priority ceilings can be computed
offline. However, the original Priority Ceiling Protocol requires
the tracking of a priority ceiling among all currently acquired
locks; this would require online global state even among non-
interacting components.

Priority Inheritance Protocol. An interface will provide
locking with PIP semantics if tagged with the “inherited”
priority protocol attribute. For these interfaces, our framework
supplies the CPI with three variables: a non-atomic boolean
lock, a pointer to the Thread Control Block (TCB) of the
lock-holder, and the current inherited priority. These CPIs
are again supplied with a pool of threads, the size of which
is equal to the number of possible concurrent requests. The
threads belong to the same CPI and share an address space,
so they all have access to the CPI-scoped variables used
by the protocol mechanisms. Under traditional fixed-priority
preemptive scheduling, these threads are set to wait on the
endpoint at the priority ceiling.

Our implementation of that protocol is illustrated in Fig. ]
When a request arrives, the responding thread (1) checks the
lock. If the lock is already held, it proceeds to (2) check
the inherited priority variable against its own request priority.
If the request priority is higher, it is inherited by the thread
currently holding the lock: the responding thread (3) updates
the inherited priority variable, then (4) elevates the priority
of the locking thread’s TCB. At this point, it (5) waits for a
signal indicating that the lock has been freed.

If, however, the lock is unlocked, the thread (8) marks
the lock as locked, (9) sets the inherited priority variable to
the request priority, (10) sets the TCB pointer to itself, then
(11) demotes its priority to the request priority, (12) runs



the interface’s procedure code to handle the request. Once
complete, it (13) promotes itself back to the priority ceiling,
(14) marks the lock as unlocked, (15) signals any threads
waiting for the lock, then finally (16) replies to the requestor
and returns to waiting on the endpoint.

The seL4 kernel provides notification objects, which are
simple signaling mechanisms that support blocked waiting.
Notification objects are not priority aware if the seL.4 kernel is
compiled without MCS features: when a signal is received, the
kernel wakes the first waiting thread. Thus, a single notification
object is insufficient for signalling the threads waiting on a
held lock, as the highest priority waiting thread is not guaran-
teed to be the first to obtain the lock when it becomes avail-
able. For the default kernel, we implement a priority-aware
signaling mechanism that we call a notification manager. The
notification manager contains a priority queue (implemented
as a max-heap) of notification objects, sorted by priority,
with ties broken by earliest insertion. When initialized, the
notification manager creates an array of notification objects,
equal to the size of the thread pool, by using the CAmkKES
seL4 object allocator. The notification manager reveals two
public functions, wait and signal, similar to the seL4 system
calls of the same names for notification objects. The request
priority is passed with the wait call, allowing the notification
manager to retrieve a notification object from the free list,
then insert it into the heap. The wait function then uses a
system call to wait on that notification object. The notification
manager signals the notification object at the head of the heap.
The awakened thread (6) returns from the sel.4 wait system
call; its control flow remains in the notification manager’s wait
function, which (7) pops its notification object from the head
of the priority queue. The thread (8) then proceeds as if it had
found the lock available.

In the absence of round-robin scheduling of threads at the
same priority, all execution of our protocol (steps 1-11 and
14-16 in Fig. [) occurs at the priority ceiling, and so cannot
be preempted by new requests. The only time that execution
can be preempted by a request is when the thread is executing
the CPI procedure (12-13). If preempted here, it will remain
preempted while the responding thread executes steps (1-5).
Thus, there can only be two threads from the pool active at
any given time: either when there is one thread executing
(12-13) and one at the priority ceiling in (1-5), or when
the thread holding the lock signals the notification manager,
waking another thread. In the latter case, the signaled thread
will proceed through (6-8), while the signaling thread proceeds
to (16). As both threads are executing at the priority ceiling,
no new requests can arrive, and so the thread just awakened
will be guaranteed that when it pops the head of the heap, it
will have its own notification object, and the lock will not be
acquired by another thread before it proceeds to set the lock.
Thus, by priority semantics, our protocol is race-free.

However, under round-robin scheduling of same-priority
threads, a race may occur: a responding thread running the
mechanisms of our protocol can be swapped out for a requestor
at the priority ceiling, which would wake another thread from

Implementation Lines of Code
Base Framework C Code 68
Priority Inheritance Protocol C Code 60
Notification Manager C Code 123
CAmKES Macros 7
CAmKES Connector Declarations 100
CAmKES Connector Jinja Templates 30
Total 388

TABLE I: Implementation Lines of Code

the pool. We can solve this problem by setting the thread pool’s
priority to be PC+1. Now, being a strictly greater priority, the
race-free arguments we presented again hold true: execution of
our protocol mechanisms occurs at PC+1, and therefore cannot
be preempted by new requests. Even with nested locking,
a request made by a thread already holding a lock would
necessarily be at a priority inherited from a requestor, or from
a “fixed” priority CPI thread running at the priority ceiling).

Using PC+1 priority, however, can induce undesirable in-
terference with tasks of higher priorities. To avoid this, we
adopt a priority-laddering scheme [30] similar to ones used in
other prior work (e.g., LynxOS [31]]), whereby tasks (and their
originating components’ threads) are restricted to even priority
values (from sel4’s 0-254 priority range), and so the thread
pools assigned to interfaces specified with “inherited” priority
are thereby restricted to the odd values (from 1 to 255). While
this reduces the number of effective priority levels from 256 to
128, this still leaves more priorities available than are provided
by Linux’s fixed-priority scheduling classes [32]], which should
be sufficient for most realistic task systems.

Implementation and Usability Enhancements. Our
userspace implementation targets closed embedded real-
time systems running atop the sel4 kernel on unicore or
fully-partitioned multicore hardware. We implemented our
framework with the goal of staying as true to the CAmKES
language and design philosophy as possible, leveraging
existing techniques used by the CAmKES framework to
provide support for several protocols in only 388 lines of
code, as summarized in Table [} It minimizes (to the extent
possible) changes needed for existing CAmKES application
systems to incorporate its functionality. We now describe how
we met this goal and summarize how a developer would use
our framework.

CAmKES allows components to be declared with a set of
attributes which are compiled into symbols in the component
binary, and the user-provided source code for the component
can use them as variables. It provides several built-in attributes;
e.g., _priority sets the priority of an active component’s
execution thread. If a user manually declares this attribute
in a component’s definition, its priority becomes available as
a variable in the source code. This is necessary for priority
introspection without modification to underlying CAmKES or
seL4 code because seL4 does not provide a system call for
threads to read their current priority level. We define additional
attributes which control the number of threads waiting on the
endpoint and the CPI’s priority protocol; a provided function
macro generates all required attributes for a given interface.

CAmKES provides a library of standard connectors to



component interfaces, using the Jinja template engine [33]]
to generate much of the underlying code (including syscalls)
that brokers communication over a given connector type. We
define a new class of connectors that inherits much of its
functionality from the built-in templates for synchronous IPC.
Each connector of this class defines the number of threads
bound to the underlying endpoint of the target CPI; a provided
function macro creates a connection with the appropriate
connector type when given an object macro specifying the
number of threads.

Our template code additionally inserts hooks into the ap-
propriate functions in our library: initialization, and function
calls before and after the interface procedure runs. This ensures
that users of our framework do not have to remember to man-
ually insert the necessary hooks into the provided component
source code. For initialization, we leverage the existing __init
function that CAmKES declares for each procedure interface.
Normally, a user would provide an appropriate function defini-
tion; our template defines it instead, ensuring that it is called
at component initialization. To allow additional user-defined
initialization, we provide an _init function declaration (note
the single, rather than double, underscore) that is called at the
end of our template’s initialization.

Thus the framework, in its current form, requires the user
to make few changes to their component source code; changes
are minimal and largely necessary to avoid modifying the
underlying CAmkKES parser and seL4 kernel. Our framework
also contains appropriate checks such that incorrectly-specified
attributes will cause the application to fail to compile (with
appropriate error messages). Its ease of use and its compilation
checks to avoid misconfiguration make our framework suitable
for developing closed real-time systems.

It is worth noting that the digraph representation generated
by the CAmKES parser describes connections from compo-
nents to CPlIs; this lacks the information needed to determine
the transitive closure of a request chain, as a component
with multiple CPIs might make nested requests as part of the
procedure of only one of those; this would not be evident from
the digraph. This means, without changes to the CAmkKES
parser, that the presence of a cycle does not necessarily
imply a call chain loop with deadlock potential, and that our
compilation checks cannot detect the presence of a nested
request from a CPI implementing PIP to another that does
not implement a “fixed” priority protocol. Thus, even if the
exported DOT representation of the digraph reveals a cycle,
or a possibly invalid nested request from a CPI implementing
PIP, we leave it up to the user to decide if the configuration is,
indeed, problematic. We defer a modification of the CAmkES
parser to provide transitive closure to future work.

V. EVALUATION

We evaluated our library using the CAmkKES 3.10.0 frame-
work, targeting version 12.1.0 of the seL.4 kernel, testing syn-
thetic task sets on both Intel x86-64 and ARMv8 AARCH32
ISA hardware platforms. We ran each task set using two
configurations of the seL4 kernel: the default configuration,

which provides round-robin scheduling for threads of equal
priority; and a configuration that schedules threads according
to traditional, fixed-priority preemptive semantics, which was
achieved by setting the round-robin timeslice to a sufficiently
large value. So that we could evaluate the efficacy and
overhead of our notification manager, we did not enable the
kernel’s MCS features. For the Intel platform, we used a
system with two Intel Xeon Gold 6130 Skylake processors run-
ning at 2.1 GHz (Hyperthreading, Speedstep, and Turboboost
disabled) and 32GB of memory. For the ARM platform, we
used a Raspberry Pi Model 3 B+, which has a 4-core ARMvS8
Cortex-A53 and 1GB of RAM. We disabled the L2 cache, and
clocked it to 700 MHZEI Despite the 64-bit CPU, seL4 only
supports a 32-bit ISA on the Raspberry PiE] We enabled kernel
printing and userspace access to the ARM PMU to allow our
system to measure and print elapsed cycles.

Protocol Overheads. We begin by measuring the overheads
induced by our protocol. To support fine-grained microbench-
marking, we measure elapsed cycles (using rdtsc on Intel, and
reading directly from the cycle count register on the ARM
PMU) for all measurements. Because reading from the cycle
counter incurs its own overhead, we first benchmark these
reads by measuring the elapsed cycles between two successive
cycle counts. Results are summarized in Table

Dividing the maximum cycles measured between two back-
to-back cycle counter reads, by the clock speed of each
platform, gives a bound on the temporal resolution of our
measurements of a little under 25 ns on the Intel Xeon,
and 13 ns on the Raspberry Pi. We individually measure the
overheads for both sending requests over an endpoint (Call)
and replying to the request (Reply), separately measuring
the overheads of our PIP implementation for requests to a
CPI with an already-acquired lock (locked) versus those with
an available lock (unlocked). We compare these overheads
for our various protocols (propagated, inherited for PIP, and
fixed for IPCP and NPCS) to the overhead of a request
over the CAmKES built-in seL4RPCCall connector; while our
protocols do induce additional overhead, the maximum values
we measured equates to slightly less than 6 us on Intel and less
than 16 us on ARM, which is suitably low for task sets running
with periods as small as 5 ms. Further, the mean overheads
induced by our protocol are within an order of magnitude of
benchmarked raw IPC invocation values in the seL4 kernell]

We additionally measure the overhead induced by priority
queues realized by different heap sizes within our notification

“The processor supports a CPU clock speed of 1.4 GHz. However, as noted
in [34], this frequency cannot be sustained continuously, and may lead to
throttling and instability. To maintain predictability, we boot the Raspberry
Pi with a constant 700 MHz CPU clock speed, set the GPU to 250 MHz,
and disable throttling. Details can be found at https://www.raspberrypi.com/
documentation/computers/config_txt.html

Shttps://docs.sel4.systems/Hardware/Rpi3.html

%Benchmarked performance numbers listed at https:/sel4.systems/About/
Performance/ report an average overhead of 382 and 387 cycles, respectively
for IPC call and reply between threads in the seL4 kernel without the CAmKES
framework. For the ARMVS platform (in 64-bit mode) the reported values are
395 and 402. Even using PIP, our mean overheads are only about 6.5 this
on Intel, and 4.8 x this on ARM.


https://www.raspberrypi.com/documentation/computers/config_txt.html
https://www.raspberrypi.com/documentation/computers/config_txt.html
https://docs.sel4.systems/Hardware/Rpi3.html
https://sel4.systems/About/Performance/
https://sel4.systems/About/Performance/

Intel Xeon Gold 6130 Raspberry Pi Model 3 B+

min max | mean | stddev min max | mean | stddev
Read cycle counter 22 52 24 1.5 8 9 8 0.01
Call, built-in 1142 | 3344 | 1170 30 469 | 3168 471 29
Reply, built-in 1108 | 2266 | 1129 14 414 | 1625 414 12
Call, fixed 1028 | 3664 | 1187 161 604 | 2691 689 82
Reply, fixed 1002 | 2888 1050 66 434 | 1137 461 42
Call, propagated 2252 | 6870 | 2436 156 | 1628 | 5740 | 1755 92
Reply, propagated 2178 | 4464 | 2221 30 | 1433 | 2191 1518 35
Call, inherited, unlocked 2296 | 6286 | 2481 156 | 1711 | 5943 1835 85
Call, inherited, locked 2298 | 6200 | 2518 179 | 1683 | 5060 | 1827 83
Reply, inherited, unlocked | 2222 | 4258 | 2274 29 | 1518 | 2249 | 1589 23
Reply, inherited, locked 2224 | 4010 | 2275 29 | 1526 | 2555 | 1593 29
Dispatcher Overhead 928 | 1638 958 13 75 304 75 2

TABLE II: Overheads (in cycles) for Protocol Mechanisms

A Minimum Mean Maximum

1200

1000

®
=}
S

T
A

e L
TTT,M-I-IMLM

it o et 80yt et oy L0
117-’-‘1'4 L A AP 7N
200 il AVYEA VAN LAY
H - AOO
KRG
v
iy

0 20 40 60 80 100

Elapsed Cycles
{2}
o
o

Queue Size

(a) Intel Xeon Gold 6130

A Minimum Mean Maximum

w B A’
g o o o
o & © ©

"
[}
g 300 T TR
> T e
) TR T U ELT et e R e R T
= 250 e T T L L
3 prnie Sy A A A

200 B R i A AD AN B At
o R = 4 2588 AAAA%A Aan AAAAuffn A

150 }ﬁt,ﬂl B MO0 &Mﬁﬁ Doyt A

100 |

50 &

0
0 20 40 60 80 100

Queue Size

(b) Raspberry Pi Model 3 B+

Fig. 5: Measured Priority Queue Overheads (in cycles)

manager. For a given heap size n, we initialize the heap to hold
n — 1 notification objects with random priorities, then measure
the elapsed cycles to push one more notification object into the
heap, then pop the notification object with the greatest priority
(and, among those of equal priority, the lowest insertion order).
Times are plotted in Fig. [5] with error bars indicating one
standard deviation about the mean. Even the maximum values
observed are upper-bounded by 1132 cycles (less than three
fifths of a microsecond) on Intel and 476 cycles (less than three
fourths of a microsecond) on ARM. This demonstrates suitably
low overhead of our notification object heap itself even as
the number of elements it holds grows to 100 (a larger value
than many realistic scenarios would experience) and suggests
that the overheads for our priority inheritance protocol are
dominated by the costs of the system calls it uses.

Empirical Evaluation. To facilitate checking the schedula-
bility of actual task sets running in CAmKES atop seL.4 on our
selected hardware platforms, we generate synthetic task sets
over a representative topology of interacting components (the
one illustrated in Fig. [2), all running on a single core. We use
the following 3 configurations: (1) The CPIs of components
A and B both propagate priorities, (2) the CPIs of A and B
both encapsulate exclusive access to shared resources using
the IPCP, and (3) A’s CPI propagates priorities, while B’s CPI
(which contains the terminal endpoint in its request chain)
encapsulates a lock using PIP. For each configuration, we
generate task sets with utilizations ranging from 0.1 to 1.0. For
each utilization value, we generate 10 task sets: we (1) assign
task utilizations according to the UUniSort algorithm [35],
(2) randomly select task periods from a set of harmonic
values from 5 ms to 1 second (allowing trials with repeated
hyperperiods to be performed efficiently), then (3) assign
task workloads and priorities appropriately, and (4) sort tasks
by increasing workload. Each task is then decomposed into
subtasks according to the component CPIs it traverses: we
generate the workloads of each subtask (and therefore CPI)
according to UUniSort (with the sum of the subtask workloads
equal to the task workload minus the measured overheads
induced by our protocol for requests between components).
For each task where a CPI's workload has already been
determined (if it’s shared with another task, for which it
executes subtasks), we use the previously assigned value, and
then generate remaining subtask workloads with UUniSort.

Each task set was run for 10 hyperperiods, with each task
releasing up to 2000 jobs. We implemented periodic tasks
by defining a component, the Dispatcher, which registers
a periodic timeout with the CAmkKES library’s TimeServer
component. The TimeServer is included among the reusable
components released with CAmKES, though it does not na-
tively support the Raspberry Pi; we developed a platform-
specific header for the Raspberry Pi Model 3’s BCM2837
firmware, realized in only 40 lines of code by hooking into
existing drivers for the board’s timer hardware.

An instance of the Dispatcher is created for each task,
jobs of which it dispatches via an seL4RPCCall. Dispatchers
are assigned a priority higher than the three tasks, which
ensures that all Dispatcher initialization occurs before any



task can execute, and that any task can be preempted by job
release, such that the exact time of release can be recorded.
Each Dispatcher sets a periodic timer according to its task’s
period. When the timer expires, the Dispatcher (1) issues an
instruction to read from the cycle counter, (2) sends an RPC
request to its associated task component, then, when it receives
a reply, (3) reads again from the cycle counter. The worst-case
overhead incurred by the Dispatcher to wait on the timer’s
notification object, as well as the time it takes to determine
job completion (aggregated as the last line of Table [II) are
subtracted from the elapsed time. If the resulting value does
not exceed the task’s period, the job met its deadline.

Task workloads were synthesized by looping on subsequent
floating point multiplication and addition operations. We mea-
sured the execution time, in cycles, for 109 iterations on the
Intel Xeon, and 10° iterations on the slower Raspberry Pi. On
the Xeon, the maximum execution time was 9.61 x 10° cycles
with a standard deviation of only 2478 cycles (under 1.2 us).
For the Raspberry Pi, the maximum was 8.46 x 10° cycles,
with a standard deviation of just 40 cycles (under 60 ns). The
worst-case overhead of the Dispatcher’s communication over
the endpoint with its task component, as well as its two reads
from the cycle counter (shown in the first 3 rows of Table
are subtracted from the execution times assigned to each task,
before workload iterations are assigned to individual subtasks.

Perhaps unsurprisingly given the harmonic periods of the
tasks and the predictable and well-bounded synthetic workload
and library overhead times when running on both hardware
platforms, no deadlines were missed for any of our tested task
sets, even those having a utilization of 1.0.

Schedulability Analysis. To gauge the broader theoretical
schedulability beyond the task set configurations evaluated
above, we generated synthetic task sets according to same
methodology, but with task periods from 5 ms to 1 second
selected from the log-uniform distribution described in [36]
(Eqn 4), assigning unique rate-monotonic priorities to each
task. We also considered NPCS, for which the CPIs of A
and B are both assigned the highest system priority. For each
configuration, we generated task sets with utilizations ranging
from 0.01 to 1.0, with 1000 task sets for each utilization value.
We plotted the percentage of task sets that are guaranteed to be
schedulable at each total utilization according to the hyperbolic
bound without blocking, the hyperbolic bound with blocking
(Eqn. [2), and the Liu and Layland bound with blocking
(Eqn. 3). Note that for systems of 3 tasks, the Liu and Layland
utilization bound without blocking is 0.780. Blocking times are
calculated according to the discussion in Section [lII| using the
empirical overhead measurements presented in Table [lIl The
schedulability results were similar for the different hardware
platforms, and so in this section we only plot results for the
Intel Xeon platform, and report any differences seen on the
Raspberry Pi in the text.

In Fig. [6l we show the proportion of schedulable tasks
according to each bound when both CPIs propagate priority.
The overhead and blocking times induced by the underlying
protocol are low enough to make the hyperbolic and Liu

0.9

o
2 o8 g
3 07 m
£
AL 06 A hyperbolic bound a
E’ E 2451 hyperbolic bound with blocking a
2 0'3 LL bound with blocking a
s o :
o 02 By
= o1 %,
By
0 SRR
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Task System Utilization
Fig. 6: Schedulability with both CPIs propagating priorities
| TS —_——
o 09
8 08 B
A
S 07 B8
0)
8 g 08 A hyperbolic bound 2
2L .. yperbolic boun
o @ ™ hyperbolic bound with blocking B
s ¥ oa
-8 03 LL bound with blocking A
g- [a]
o 0.2 AA
& o1 B,
0 iy —
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Task System Utilization
Fig. 7: Schedulability with both CPIs using IPCP
1 e
o 09 n
% 08
=3
E 0.7 A
a2 06 A hyperbolic bound A
2 i 0'4 hyperbolic bound with blocking A
2 ' LL bound with blocking A
T 0.3
o A
g 0.2 A
& o1 i
0 51 N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Task System Utilization

Fig. 8: Schedulability with both CPIs using NPCS

and Layland schedulability tests with blocking times virtually
indistinguishable from equivalent task sets without blocking.
Fig. [7] shows the proportions of schedulable tasks when both
CPIs are assigned fixed priorities according to IPCP. We ob-
served similar schedulability when component A’s CPI simply
propagates priorities and component B’s CPI inherits priorities
according to PIP: for both configurations, the gap between
the hyperbolic bounds with and without blocking is narrow;
this shows that for both implementations, many task sets that
would be schedulable under this sufficiency condition without
mutually exclusive critical sections are still schedulable even
with the blocking times they induce.

From the results plotted in Fig. |8] we see that when both
CPIs are assigned the maximum system priority, such that
they implement NPCS, the proportion of schedulable tasks
decreases significantly compared to IPCP. This demonstrates
the clear disadvantages of the protocol: we begin to see
task sets with total utilizations as low as 0.04 that are not
guaranteed schedulable under NPCS; under IPCP all generated
task sets with total utilization above 0.55 on the Intel Xeon
(and above 0.6 on the Raspberry Pi), were guaranteed to be
schedulable under the hyperbolic bound with blocking. This
justifies our decision to exclude NPCS from evaluation on the



target hardware platforms, as its schedulability guarantees are
significantly limited.

VI. CONCLUSIONS AND FUTURE WORK

The results of our evaluations demonstrate that our ex-
tensions to the CAmKES component framework can pri-
oritize cross-component control flows effectively. Reentrant
CPIs execute at the priorities of the requesting tasks, while
CPIs encapsulating critical sections use priority-based locking
protocols without the need for additional atomic operations.
This allows CAmKES to provide suitable end-to-end timing
guarantees for real-time systems. As future work, we intend
to extend our concurrency framework in several ways: the
addition of threads and notification mechanisms to CPI end-
points that use Priority Inheritance Protocol, so that PIP can
be extended across multiple CPIs; expansion of our framework
to support end-to-end timing guarantees across asynchronous
event notifications; modification of the CAmKES parser to
allow the user-supplied initialization function to remain the
default __init; a mechanism supporting transitive closure
over request chains, allowing more robust deadlock detection
and alerting to invalid component request configurations; and
support for request cancellation, as in [23|]. We additionally
plan to evaluate in comparison with the Patina API [14], and
we are considering formal verification of our mechanisms.

REFERENCES

[1] M. D. Mcllroy, “Mass-produced software components,” Software En-
gineering: Report of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7-11 Oct 1968, pp. 79-85, Jan 1969.

[2] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “Camkes: A component model
for secure microkernel-based embedded systems,” Journal of Systems
and Software, vol. 80, no. 5, pp. 687—699, May 2007.

[3] “The sel4 microkernel,” https://docs.sel4.systems/projects/seld/, selL4
Foundation, accessed: 23 Jan, 2022.

[4] K. Elphinstone and G. Heiser, “From 13 to sel4 what have we learnt in
20 years of 14 microkernels?” in Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, ser. SOSP *13. New York,
NY, USA: Association for Computing Machinery, 2013, p. 133-150.

[5] “Camkes manual,” |https://docs.sel4.systems/projects/camkes/manual.
html, sel.4 Foundation, accessed: 23 Jan, 2022.

[6] G. Klein, J. Andronick, M. Fernandez et al., “Formally verified software
in the real world,” Commun. ACM, vol. 61, no. 10, p. 68-77, sep 2018.

[7]1 G. Heiser, G. Klein, and J. Andronick, “Sel4 in australia: From research
to real-world trustworthy systems,” Commun. ACM, vol. 63, no. 4, p.
72-75, Mar 2020.

[8] G. Klein, K. Elphinstone, G. Heiser et al., “Sel4: Formal verification of
an os kernel,” in Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, ser. SOSP 09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 207-220.

[9]1 G. Klein, J. Andronick, K. Elphinstone et al., “Comprehensive formal

verification of an os microkernel,” ACM Trans. Comput. Syst., vol. 32,

no. 1, Feb 2014.

B. Blackham, Y. Shi, S. Chattopadhyay, A. Roychoudhury, and

G. Heiser, “Timing analysis of a protected operating system kernel,”

in 2011 IEEE 32nd Real-Time Systems Symposium, 2011, pp. 339-348.

K. Balasubramanian, N. Wang, C. Gill, and D. Schmidt, “Towards

composable distributed real-time and embedded software,” in [EEE

International Workshop on Object-Oriented Real-Time Dependable Sys-

tems (WORDS), Jan 2003.

V. Subramonian, N. Wang, L.-J. Shen, and C. Gill, “The design and

performance of configurable component middleware for distributed real-

time and embedded systems,” in IEEE Real-Time Systems Symposium

(RTSS), Dec 2004, pp. 252-261.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

“Corba component model (version 3.0),” https://www.omg.org/spec/
CCM/3.0, Object Management Group, oMG Document formal/02-06-
65 (Accessed: 24 May, 2001).

S. Jero, J. Furgala, R. Pan et al., “Practical principle of least privilege for
secure embedded systems,” in 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 1-13.

B. Ford and J. Lepreau, “Evolving mach 3.0 to a migrating thread
model,” in USENIX Winter 1994 Technical Conference (USENIX Winter
1994 Technical Conference). San Francisco, CA: USENIX Association,
Jan 1994.

G. Parmer, “The case for thread migration: Predictable ipc in a customiz-
able and reliable 0s,” in Proceedings of the Workshop on Operating
Systems Platforms for Embedded Real-Time applications (OSPERT),
2010, pp. 91-100.

Q. Wang, J. Song, and G. Parmer, “Execution stack management for
hard real-time computation in a component-based os,” in 2011 IEEE
32nd Real-Time Systems Symposium, 2011, pp. 78-89.

U. Steinberg, J. Wolter, and H. Hartig, “Fast component interaction for
real-time systems,” in /7th Euromicro Conference on Real-Time Systems
(ECRTS’05), 2005, pp. 89-97.

J. Liedtke, “Improving ipc by kernel design,” SIGOPS Oper. Syst. Rev.,
vol. 27, no. 5, p. 175-188, Dec. 1993.

L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” IEEE Transactions on Com-
puters, vol. 39, no. 9, pp. 1175-1185, 1990.

G. C. Buttazzo, Hard Real-Time Computing Systems, 3rd ed.
York: Springer, 2011.

T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time
Syst., vol. 3, no. 1, p. 67-99, Apr 1991.

U. Steinberg, A. Bottcher, and B. Kauer, “Timeslice donation in
component-based systems,” in Proceedings of the Workshop on Operat-
ing Systems Platforms for Embedded Real-Time applications (OSPERT),
2010, pp. 16-23.

G. Lipari, G. Lamastra, and L. Abeni, “Task synchronization in
reservation-based real-time systems,” IEEE Transactions on Computers,
vol. 53, no. 12, pp. 1591-1601, 2004.

U. Steinberg and B. Kauer, “Nova: A microhypervisor-based secure
virtualization architecture,” in Proceedings of the 5th European Con-
ference on Computer Systems, ser. EuroSys "10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 209-222.

E. Bini, G. Buttazzo, and G. Buttazzo, “Rate monotonic analysis: the
hyperbolic bound,” IEEE Transactions on Computers, vol. 52, no. 7, pp.
933-942, 2003.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, p. 4661,
Jan. 1973.

A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-context
capabilities: a principled, light-weight operating-system mechanism for
managing time,” in ACM EuroSys Conference, Apr 2018, pp. 1—16.
E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” SOFTWARE - PRACTICE
AND EXPERIENCE, vol. 30, no. 11, pp. 1203-1233, 2000.

K. M. Obenland, “The use of posix in real-time systems, assessing its
effectiveness and performance,” The MITRE Corporation, 2000.
“Lynxos — posix real time operating system,” https://www.lynx.com/
products/lynxos-posix-real-time-operating-system-rtos, Lynx Software
Technologies, accessed: 23 Jan, 2022.

“The linux kernel documentation — cfs scheduler,” https://www.kernel.
org/doc/html/latest/scheduler/sched-design-CFS.html, The Linux Kernel
Organization, accessed: 23 Jan, 2022.

“Jinja,” https://jinja.palletsprojects.com/, The Pallets Projects, accessed:
23 Jan, 2022.

T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic latency management for ros 2: Benefits, challenges, and open
problems,” in 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021, pp. 264-277.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, no. 1-2, p. 129-154, May 2005.
P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in WATERS workshop at the Euromicro
Conference on Real-Time Systems, Jul. 2010, pp. 6-11.

New


https://docs.sel4.systems/projects/sel4/
https://docs.sel4.systems/projects/camkes/manual.html
https://docs.sel4.systems/projects/camkes/manual.html
https://www.omg.org/spec/CCM/3.0
https://www.omg.org/spec/CCM/3.0
https://www.lynx.com/products/lynxos-posix-real-time-operating-system-rtos
https://www.lynx.com/products/lynxos-posix-real-time-operating-system-rtos
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://jinja.palletsprojects.com/

	Introduction
	Background and Related Work
	System Model
	Design and Implementation
	Evaluation
	Conclusions and Future Work
	References

