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Abstract—Self-suspension behavior happens when a job has
to wait for some activity to complete and results in substantial
schedulability degradation in real-time systems. Despite extensive
studies for self-suspending real-time task systems, the state of
the art has barely addressed the optimality of the scheduling
algorithms, especially for tasks with dynamic self-suspension.

In this paper, we explore optimal priority assignment for
periodic real-time tasks with dynamic self-suspension under
Task-level Fixed-Priority (T-FP) scheduling. To that end, we
provide exact schedulability tests for frame-based and syn-
chronous harmonic tasks. We show that the Suspension-Aware
Deadline-Monotonic (SADM) priority assignment is an optimal
fixed-priority scheduler for many scenarios. Further, for cases
where SADM is not optimal, we adopt Audsley’s Optimal
Priority Assignment (OPA) approach to derive an optimal fixed-
priority assignment. Evaluation results show that the exact
tests outperform state-of-the-art schedulability tests from the
literature, and that optimal priority assignments significantly
improve schedulability over classical priority assignments.

I. INTRODUCTION

In real-time systems, some tasks may suspend themselves
during execution. Such “self-suspension” typically happens
when a job has to wait for some activity to complete, e.g.,
offloading its computation to a hardware accelerator [17],
[27], [56] or waiting for a shared resource [16]. The 2019
review paper by Chen et al. [22] summarizes the existing self-
suspension task models; provides general methodologies; ex-
plains the misconceptions in the literature, their consequences,
and potential solutions to fix those flaws; and presents a
summary of the computational complexity classes of different
self-suspension task models and systems. Self-suspension can
induce several non-trivial phenomena. Chen et al. conclude
that “[...] key insights underpinning the analysis of non-self-
suspending tasks no longer hold” [22], in which counterex-
amples for multiple analyses before 2014 were found.

Two self-suspension models, dynamic and segmented, are
primarily studied in the literature [22], [23].1 While in the
segmented self-suspension model a sequence of computation
segments separated by suspension intervals is specified, this
work focuses on the dynamic self-suspension task model,
where a task τi is assigned a maximum total self-suspension
time parameter Si. Specifically, under the dynamic self-
suspension model, a task τi may suspend itself at any moment
before it finishes and infinitely often as long as its total
suspension time does not exceed Si.

1Some results [8], [13], [26], [41], [43], [46] have been disproved (c.f. the
review by Chen et al. [22] and Günzel and Chen [32], [33]).

There are two correlated problems studied for self-
suspension models: how to schedule the tasks (i.e., the sched-
uler design problem) and whether all jobs meet their deadlines
under a scheduling algorithm (i.e., the schedulability test
problem). For the scheduler design problem, the objective is
to design an optimal scheduling algorithm that guarantees a
feasible schedule whenever it exists. For the schedulability test
problem, the objective is to derive exact (i.e., necessary and
sufficient) schedulability tests.

In this paper, we consider periodic real-time tasks with dy-
namic self-suspension. This model can be found in many real-
world applications. For example, many real-time autonomous
automotive and aerial systems include real-time perception
pipelines with tasks that self-suspend, e.g., while offloading
computation to GPUs or other accelerators [2], [55]. A single
job of a task might suspend multiple times in unpredictable
patterns; we provide an example in a case study of Autoware’s
default LiDAR pipeline [40] in Section VII-B. Moreover,
the recent industrial survey from Akesson et al. [1], which
examines industrial practice in the field of real-time systems,
shows that 82% of the investigated systems have periodic task
activations.

For tasks with self-suspension, the literature has focused
on sporadic task systems, where each task has a min-
imum inter-arrival time between two consecutive job re-
leases. There are only four dedicated results for periodic
task models.2 Yalcinkaya et al. [72] analyze tasks with
segmented self-suspension under non-preemptive scheduling.
Günzel et al. [36, Section V] examine the schedulability under
preemptive Earliest-Deadline-First (EDF) scheduling with dy-
namic self-suspension. Furthermore, Lin et al. [50] achieve
anomaly-free online schedules for periodic tasks with seg-
mented self-suspension. Liu et al. [52] consider synchronously
released, periodic real-time tasks with harmonic periods under
preemptive Rate-Monotonic (RM) scheduling and show that
their analysis dominates the well-known (but pessimistic)
suspension-oblivious schedulability test for uniprocessor sys-
tems. All these results show improvements by exploiting
periodicity. However, to the best of our knowledge, there is
not a single result on exact schedulability tests or optimal
priority assignments of dynamic self-suspending tasks under
preemptive Task-level Fixed-Priority (T-FP) scheduling.

2Although Casini et al. [17] also focus only on periodic tasks in their paper,
their analysis is based on the jitter-based analysis developed for sporadic tasks.



Contributions: This paper explores optimal preemptive T-FP
scheduling algorithms to deal with dynamic self-suspension.
To that end, we focus on periodic real-time task systems, to
step away from the obstacles of sporadic arrivals of real-time
jobs. Specifically, we make the following contributions:

• We show that the dynamics of self-suspension can be
easily handled in polynomial time by Suspension-Aware
Deadline-Monotonic (SADM) priority assignment when
the periodic tasks have the same period and release their
first jobs synchronously (namely, frame-based real-time
tasks) in Section IV. This holds for both implicit-deadline
and constrained-deadline task systems.

• For synchronous periodic tasks with harmonic periods
and dynamic self-suspension, in Section V, we show that
SADM is no longer optimal even for implicit-deadline
tasks and develop a polynomial-time algorithm based on
Audsley’s approach [7].

• We note that our positive results for frame-based tasks
and harmonic tasks are based on exact schedulability tests
dedicated for these scenarios. Any extension should be
done with care. In Section VI, we discuss the limitations
for extensions to sporadic tasks, fixed numbers of self-
suspension intervals, and segmented suspension models.

• The evaluation in Section VII shows that the proposed ex-
act schedulability tests significantly outperform state-of-
the-art schedulability tests. Furthermore, the optimal pri-
ority assignments lead to a substantial increase in schedu-
lability. We demonstrate this using a case study with
workloads from Autoware’s LiDAR processing pipeline
that dynamically self-suspend to invoke the GPU, and by
considering randomly-generated synthetic task sets.

II. RELATED WORK

For ordinary real-time tasks without self-suspension, the
Rate-Monotonic (RM) priority assignment is known to be
an optimal preemptive T-FP scheduler for implicit-deadline
sporadic tasks [53], synchronous periodic tasks [53], and
asynchronous periodic harmonic task systems [48, Theo-
rem 3.2]. Furthermore, the Deadline-Monotonic (DM) pri-
ority assignment is an optimal preemptive T-FP scheduler
for constrained-deadline sporadic tasks [48] and synchronous
periodic tasks [48]. Ausley’s OPA approach [6], [7] can be
used to derive an optimal T-FP assignment when the exact
schedulability test is OPA-compatible [25].

Given a priority assignment, the schedulability test problem
for ordinary real-time tasks has been widely studied for
different recurrent scenarios. Ekberg and Yi [29] provide a
summary of the state of the art regarding the computational
complexity of the schedulability test problem for uniprocessor
systems. Specifically, due to the critical instant theorem by
Liu and Layland [53] and the busy interval concept by
Lehoczky [47], the schedulability analysis for a sporadic real-
time task system is equivalent to its corresponding periodic
task system with synchronous releases. It is known that the
schedulability test problem for a given T-FP assignment can

be solved in polynomial time when the tasks have harmonic
periods and implicit [45] or constrained deadlines [15], [63].

Schedulability of dynamic self-suspending tasks has been
examined in multiple papers [4], [14], [21], [34]–[37], [39],
[51], [52] and in the book by Jane Liu [54, Page 162]. The
segmented self-suspension task model specifies tasks by a
sequence of computation segments separated by suspension
intervals, studied in [17], [19], [20], [33], [38], [42], [50],
[62], [64], [67], [72]. The generalization of self-suspension
into different scenarios has been analyzed [5], [24], [70], [71].

Although self-suspending real-time task systems have been
studied extensively, there are only sufficient schedulability
analyses for sporadic real-time tasks with dynamic self-
suspension [4], [14], [21], [34]–[37], [39], [51]. Regarding
the optimality of scheduling algorithms, Chen [18] shows that
there is no constant approximation bound (with respect to the
resource augmentation factor) for sporadic real-time tasks with
dynamic self-suspension under preemptive T-FP scheduling,
compared to the optimal schedules, if the suspension time
cannot be reduced by speeding up. Chen [18] also demon-
strates the non-optimality of Earliest-Deadline-First (EDF),
Least-Laxity-First (LLF), and Earliest-Deadline-Zero-Laxity
(EDZL) scheduling algorithms and concludes that how to
design good schedulers with a constant speedup factor remains
as an open problem for sporadic real-time tasks.

Although it is widely understood that self-suspension results
in substantial schedulability degradation in real-time systems,
whether the scheduler design problem and the schedulability
test problem under the T-FP paradigm are essentially more
difficult has been only partially discussed in the literature. The
computational complexity regarding schedulability tests [18],
[58] and scheduling algorithms [65], [66] have been mostly
limited to sporadic real-time releases, with an exception
by Chen et al. [19] for scheduling frame-based real-time
tasks with segmented self-suspension. As summarized by
Chen et al. [22], the computational complexity for schedul-
ing sporadic real-time tasks with dynamic self-suspension is
unknown and never discussed in the literature.

Table I and Table II summarize the results in the literature
as well as our findings in this paper (marked in blue) for self-
suspending tasks regarding the scheduler design problem and
the (exact) schedulability test problem.

III. SYSTEM MODEL

Tasks and Jobs: Let T = {τ1, . . . , τn} be a set of n ∈ Z≥1

tasks. Each task τi releases countably many jobs τi,j for j ∈
Z≥1. We denote by ri,j the release time of job τi,j , and assume
that job releases follow the job index, i.e., ri,j < ri,j+1. In
this work, we consider periodic tasks, where two subsequent
job releases are always exactly separated by the task period
Ti ∈ R>0, and the first job release occurs at the task phase
ϕi ∈ R (sometimes also referred to as task offset). Specifically,
we write

τi ∈ Per(Ti, ϕi) (1)

if τi releases jobs at times ri,j = ϕi+(j−1) ·Ti for j ∈ Z≥1.
This differs from the sporadic task model, where job releases



ordinary (no suspension) dynamic self-suspension segmented self-
suspension

Release Model Implicit-DL Constrained-
DL

Arbitrary-DL Implicit-DL Constrained-DL Arbitrary-DL

synchronous, frame-
based

any DM DM SADM (poly.-time, Section IV) no analysis or
optimization
known NP-hard in the

strong sense [19]
synchronous,
periodic, harmonic

RM [45] DM [48] OPA [7] (expo.-
time exists)

OPA (poly.-time, Section V)

synchronous periodic RM [48], [53] DM [48] OPA [7] (expo.-
time exists) no analysis or optimization known

asynchronous
periodic

strongly NP-hard [11], [29], [48]1

sporadic the same as synchronous periodic non-existence of bounded speedup factors for T-FP
if suspension time cannot be sped up [18], unknown
computational complexity [22]

1 Leung and Whitehead [48] show that the problem is weakly NP-hard by a reduction from the Simultaneous Congruences Problem (SCP) problem, and
it is later proved to be strongly NP-hard by Baruah et al. [11].

Table I: The scheduler design problem under T-FP for scheduling ordinary and self-suspending tasks.

ordinary (no suspension) dynamic self-suspension
Release Model Implicit-DL Constrained-DL Arbitrary-DL Implicit-DL Constrained-DL Arbitrary-DL
synchronous,
frame-based

poly.-time poly.-time (Section IV) no analysis or
optimization
knownsynchronous, pe-

riodic, harmonic
poly.-time [45] poly.-time [15], [63] expo.-time exists poly.-time (Section V)

synchronous pe-
riodic

weakly NP-complete
[28], [29] (pseudo-
poly.-time exists)

weakly NP-complete
[28], [29] (pseudo-
poly.-time exists)

weakly NP-hard
[28], [29] (expo.-
time exists)

no exact schedulability test known, at least as
difficult as the corresponding task model without
self-suspension

asynchronous pe-
riodic

weakly NP-hard and strongly co-NP-
hard [11], [29], [48]

sporadic the same as synchronous periodic

Table II: The (exact) schedulability test for ordinary and self-suspending tasks under T-FP.

are not predetermined but only a minimum inter-arrival time
is considered. Specifically, we denote by

τi ∈ Spor(Ti) (2)

the case that ri,j+1 ≥ ri,j + Ti for all j ∈ Z≥1. Furthermore,
for each task τi, a worst-case execution time (WCET) Ci is
defined. That is, we write

τi ∈ WCET (Ci) (3)

to denote that any job τi,j of task τi needs to be executed for
ci,j ∈ (0, Ci] time units to complete. Each task τi is assigned
a relative deadline Di, and it must be ensured that each job
τi,j has completed by its absolute deadline di,j := ri,j +Di.
The range of possible relative deadlines is denoted by

τi ∈ DL(I) (4)

with I ⊆ R>0. Specifically, for periodic tasks (τi ∈
Per(Ti, ϕi)) and sporadic tasks (τi ∈ Spor(Ti)), we say that
τi has an implicit deadline if Di = Ti, i.e.,

τi ∈ DL({Ti}), (5)

and a constrained deadline if Di ≤ Ti, i.e.,

τi ∈ DL((0, Ti]). (6)

Self-Suspension: Two self-suspension models are predom-
inantly studied in the literature [22]. For dynamic self-

suspending tasks τi, an upper bound Si on the maximum value
that a task can suspend is specified. That is, we denote by

τi ∈ DynSus(Si) (7)

the case that every job τi,j of τi can suspend itself as long and
as often as the maximum suspension time Si is not exceeded.
For segmented self-suspending tasks τi, the suspension pattern
is specified. That is, we denote by

τi ∈ SegSus(C1
i , S

1
i , C

2
i , S

2
i , . . . , S

mi
i , Cmi+1

i ) (8)

the case that every job τi,j of τi has mi+1 computation seg-
ments upper bounded by C1

i , . . . , C
mi+1
i , and mi suspension

intervals upper bounded by S1
i , . . . , S

mi
i . For the discussion

in Section VI, we also consider tasks where, instead of the
whole suspension pattern, only the number of self-suspension
intervals is fixed. Such tasks are denoted as

τi ∈ NumSus(mi). (9)

Scheduling Algorithms: A scheduling algorithm A deter-
mines which jobs are executed. We use si,j and fi,j to denote
the start and finish times of job τi,j in a corresponding job
schedule. The response time of τi,j is denoted as Ri,j . This
work focuses on preemptive Task-level Fixed-Priority (T-FP)
scheduling algorithms, where each task has a fixed priority
level, and where higher-priority jobs can preempt the execution
of lower-priority jobs at any time. Classical T-FP prioritization
strategies are Deadline Monotonic (DM), where the tasks
are prioritized according to relative deadlines Di, and Rate



Monotonic (RM), where the tasks are prioritized according to
period or minimum inter-arrival time Ti, i.e., task with lowest
Di or Ti has highest priority. We assume that tasks have unique
priorities. To that end, ties (e.g., same relative deadline under
DM scheduling) are broken arbitrarily but deterministically.
We denote by HP(i) be the set of tasks with higher priorities
than τi. Our analysis focuses on a single-core platform (or on
the behavior of a single core of a partitioned T-FP scheduler),
and assume that preemption costs are negligible.

Task Systems under Consideration: In Section IV, we
consider synchronously released frame-based tasks with dy-
namic self-suspension, i.e.,

τi ∈ Per(T, 0) ∩WCET (Ci) ∩DynSus(Si) (10)

holds for all tasks τi ∈ T. In other words,

ϕi = 0 for all τi ∈ T (11)
Ti = Tj = T for all τi, τj ∈ T. (12)

Section V considers synchronous harmonic tasks with dynamic
self-suspension, i.e.,

τi ∈ Per(Ti ∈ TH , 0) ∩WCET (Ci) ∩DynSus(Si) (13)

holds for all tasks τi ∈ T. Here, TH denotes a set of harmonic
periods. That is,

ϕi = 0 (14)

for all τi ∈ T, and

Ti

Tj
∈ Z≥1 or

Tj

Ti
∈ Z≥1 (15)

holds for all τi, τj ∈ T. Section VI presents further task models
to examine extensions and limitations of our results.

IV. FRAME-BASED TASKS

This section discusses optimal priority assignment under
preemptive T-FP scheduling for synchronously-released frame-
based tasks with dynamic self-suspension, i.e., for all τi ∈ T

τi ∈ Per(T, 0) ∩WCET (Ci) ∩DynSus(Si) (16)

holds. We allow all tasks to have constrained deadlines, i.e.,

τi ∈ DL((0, T ]) (17)

for all τi ∈ T. First, we present an exact schedulability test
under any T-FP priority assignment. Afterwards, we use that
test to derive the optimal priority assignment.

Usually, schedulability tests need to integrate the additional
carry-in due to suspension of higher-priority tasks in the
form of jitter, blocking, or additional carry-in jobs. However,
for constrained-deadline frame-based tasks, the suspension
behavior of higher-priority tasks does not play a role because
it avoids the carry-in completely. Hence, the worst case is
achieved if all higher-priority tasks do not suspend, and the
task under analysis suspends its full maximum suspension
time. This observation is formalized in the following lemma.

Lemma 1 (Exact test, frame-based). Let T be a set of frame-
based tasks with dynamic self-suspension and constrained
deadlines. For all τk ∈ T, let

Rk := Ck + Sk +
∑

τi∈HP(k)

Ci. (18)

The task set T is schedulable under preemptive T-FP schedul-
ing if and only if Rk ≤ Dk for all τk ∈ T. In that case, Rk

is the (exact) worst-case response time of τk.

Proof. By induction over τk ∈ T in descending priority
ordering, we show that: ‘If all tasks in HP(k) are schedulable,
then τk is schedulable with worst-case response time Rk (from
Equation (18)) if Rk ≤ Dk, and unschedulable if Rk > Dk.’

Base case: Let τk be the highest priority task, i.e., HP(k) =
∅. If Rk = Ck + Sk > Dk, then a job that executes for Ck

time units and suspends for Sk time units cannot finish until
the deadline, i.e., τk is not schedulable. However, if Rk =
Ck + Sk ≤ Dk, then Rk is an upper bound on the worst-case
response time, because there are no higher-priority tasks that
could interfere and there is no carry-in from previous jobs to
consider. The bound is exact because it can be achieved for a
job which executes Ck time units and suspends Sk time units.

Induction step: Consider a job τk,j of τk without carry-
in from previous jobs of τk. The worst-case response time of
that job is lower bounded by Rk, because that is achieved
if τk,j executes for Ck and suspends for Sk time units, and
further all higher-priority jobs τi ∈ HP(k) released at the same
time execute for Ci time units without suspension. Therefore,
if Rk > Dk, then τk is unschedulable. However, if Rk ≤
Dk ≤ T , then Rk is also an upper bound on the response
time of τk,j because (i) Ci is the worst-case interference from
the higher-priority job τi,j , (ii) no subsequent jobs of higher-
priority tasks can interfere with τk,j , and (iii) previous jobs
of higher-priority tasks finish before rk,j due to the induction
hypothesis. Furthermore, if Rk ≤ Dk ≤ T then the subsequent
job τk,j+1 cannot have carry-in from previous jobs of τk either,
i.e., considering jobs without carry-in from previous jobs is
sufficient. This proves the induction step.

Next, we exploit the exact test to build an optimal schedul-
ing algorithm. To that end, we observe that the schedulability
condition Rk ≤ Dk from Lemma 1 can be reformulated as

Ck +
∑

τi∈HP(k)

Ci ≤ Dk − Sk. (19)

For each task τi ∈ T, we construct a non-suspending task

τ ′i ∈ Per(T, 0)∩WCET (C ′
i)∩DynSus(0)∩DL({D′

i}) (20)

with execution time C ′
i = Ci and D′

i = Di − Si. Since the
task set T′ := {τ ′i | i = 1, . . . , n} is not self-suspending, its
T-FP schedulability condition is

∀τ ′k ∈ T′ : C ′
k +

∑
τi∈HP(k)

C ′
i ≤ D′

k, (21)

which is equivalent to the scheduling condition of Equa-
tion (19). Therefore, a T-FP scheduling algorithm can feasibly
schedule T if and only if it can feasibly schedule T′.



It is well-known that the Deadline-Monotonic (DM) algo-
rithm is an optimal T-FP scheduling algorithm for a set of
periodic non-suspending preemptive real-time tasks [53] with
the same phase. Therefore, assigning task priorities according
to D′

i = Di−Si (i.e., task with lowest D′
i has highest priority)

is optimal. This leads us to the following theorem, which says
that suspension-aware deadline-monotonic (SADM) priority
assignment is an optimal T-FP scheduling algorithm.

Theorem 2 (Optimality of SADM, frame-based). Assigning
task τk whose Dk − Sk is smaller a higher priority (ties are
broken arbitrarily) is an optimal T-FP scheduling algorithm
for frame-based tasks with dynamic self-suspensions and con-
strained deadlines.

Proof. To prove that SADM is optimal, we need to show that
if T is schedulable under any other T-FP scheduling algorithm
then it is also schedulable under SADM.

Assume we find a prioritization of T, which is not SADM,
such that T is schedulable. Without loss of generality, we
assume that the tasks are indexed in priority order, i.e.,
HP(k + 1) = τk ∪ HP(k) for all k ∈ {1, . . . , n− 1}. Since the
prioritization is different from SADM, there exist tasks τi, τj ,
with i < j and (Di − Si) > (Dj − Sj). Consequently, there
must be adjacent tasks τk, τk+1 with k ∈ {i, . . . , j − 1} and

(Dk − Sk) > (Dk+1 − Sk+1). (22)

In the following, we show that swapping the priority of these
adjacent tasks preserves schedulability of T.

We know that τk and τk+1 are schedulable under the
given prioritization. Therefore, by using the exact test from
Lemma 18, we obtain:

Ck + Sk +
∑

τi∈HP(k)

Ci ≤ Dk (23)

Ck+1 + Sk+1 +
∑

τi∈HP(k+1)

Ci ≤ Dk+1 (24)

To conclude that after swapping the priorities of τk and τk+1

the task set T remains schedulable, we must show that the
following two equations hold:

Ck + Sk +
∑

τi∈HP(k)∪{τk+1}

Ci ≤ Dk (25)

Ck+1 + Sk+1 +
∑

τi∈HP(k+1)\{τk}

Ci ≤ Dk+1 (26)

We derive Equation (25) by reformulating Equation (24).
Specifically, Equation (24) is equivalent to Ck+1 + Ck +∑

τi∈HP(k) Ci ≤ Dk+1−Sk+1. Using Dk+1−Sk+1 < Dk−Sk,
we obtain Ck+1 + Ck +

∑
τi∈HP(k) Ci ≤ Dk − Sk, which

is equivalent to Equation (25). Furthermore, Equation (26)
is fulfilled, because Ck+1 + Sk+1 +

∑
τi∈HP(k+1)\{τk} Ci ≤

Ck+1 + Sk+1 +
∑

τi∈HP(k+1) Ci

(24)
≤ Dk+1.

We have shown that by swapping the priorities of tasks τk
and τk+1 with (Dk−Sk) > (Dk+1−Sk+1), the task set T re-
mains schedulable. By swapping the priority of adjacent tasks

finitely many times, we achieve the prioritization of SADM.
We conclude that when T is schedulable under any T-FP
scheduling algorithm, it is also schedulable under SADM, i.e.,
SADM is an optimal T-FP scheduling algorithm.

Time Complexity: Sorting the n tasks in T according
to Dk − Sk requires O(n log n) time complexity. Testing
whether Equation (19) holds for the given n tasks from
the highest-priority task to the lowest-priority task can be
done in O(n) time complexity, amortized to O(1) time per
task. Therefore, validating whether the schedule of SADM is
meets their deadlines for synchronous, frame-based tasks with
dynamic self-suspension can be handled in O(n log n) time.

V. HARMONIC TASKS

This section discusses optimal priority assignment under
preemptive T-FP for synchronous harmonic tasks with dy-
namic self-suspension, i.e., for all τi ∈ T

τi ∈ Per(Ti ∈ TH , 0) ∩WCET (Ci) ∩DynSus(Si), (27)

where TH is a set of harmonic periods. As in Section IV,
if not stated otherwise, we allow tasks to have constrained
deadlines, i.e.,

τi ∈ DL((0, Ti]) (28)

for all τi ∈ T. For this exploration, we first explore exact
schedulability tests, and derive optimal priority assignments
afterwards. While we show that SADM is only optimal in
specific cases, we prove that the Optimal Priority Assignment
(OPA) algorithm, proposed by Audsley [6], [7], can be used
to find optimal priority assignments for the remaining cases.

The exact schedulability test builds upon a similar obser-
vation as Lemma 1, namely that carry-in from higher-priority
tasks can be avoided by assigning synchronous harmonic pe-
riods. The only difference is that more jobs of higher-priority
tasks can be released during the execution of the job under
analysis τk,j . Specifically, during the interval [rk,j , rk,j + t),
task τi can release up to

⌈
t
Ti

⌉
jobs. This leads us to the

following exact test.

Lemma 3 (Exact test, harmonic). Let T be a set of syn-
chronous harmonic tasks with dynamic self-suspension and
constrained deadlines. The following is an exact schedulability
test under preemptive T-FP scheduling: For all τk ∈ T there
exists t ∈ (0, Dk] such that

Ck + Sk +
∑

τi∈HP(k)

⌈
t

Ti

⌉
Ci ≤ t. (29)

Proof. During any interval [rk,j , rk,j + t), a higher-priority
task τi ∈ HP(τk) releases at most

⌈
t
Ti

⌉
many jobs due to the

synchronous harmonic periods. Therefore, the available time
for a job τk,j of task τk in the interval [rk,j , rk,j+t), provided
that all higher-priority tasks HP(τk) are schedulable, is:

t−
∑

τi∈HP(k)

⌈
t

Ti

⌉
Ci (30)



If Ck +Sk ≤ t−
∑

τi∈HP(k)

⌈
t
Ti

⌉
Ci, then τk,j finishes during

the interval [rk,j , rk,j + t]. Therefore, if there exists a t ∈
(0, Dk] such that Equation (29) holds, then all jobs of τk finish
before their deadline, i.e., τk is schedulable.

On the other hand, if τk is schedulable, then consider the
scenario that (i) all higher priority jobs τi,j with τi ∈ HP(τk)
execute for Ci time units and suspend for 0 time units, (ii) τk
executes for Ck time units and suspends for Sk time units,
and (iii) jobs of τk suspend only if no higher-priority job
is executed. Let fk,1 be the finishing time of the first job
under that scenario. Since there are exactly

⌈
t
Ti

⌉
jobs of

each higher-priority task τi ∈ HP(τk) released during [0, fk,1),
we have Ck + Sk +

∑
τi∈HP(k)

⌈
fk,1

Ti

⌉
Ci = fk,1. Therefore,

Equation (29) holds with t = fk,1 ∈ (0, Dk]. We conclude
that the test formulated in Lemma 3 is exact.

For the special case with implicit deadline, i.e.,

τi ∈ DL({Ti}), (31)

there is no need to check all t ∈ (0, Dk] = (0, Tk], because
the best case for Equation (29) is achieved with t = Tk. This
leads us to the following lemma.

Lemma 4 (Exact test, harmonic, implicit deadline). Let T
be a set of synchronous harmonic tasks with dynamic self-
suspension and implicit deadlines. The following is an exact
schedulability test under T-FP scheduling: For all τk ∈ T,

Ck + Sk +
∑

τi∈HP(k)

⌈
Tk

Ti

⌉
Ci ≤ Tk. (32)

Proof. Since t−
∑

τi∈HP(k)

⌈
t
Ti

⌉
Ci ≤ Tk−

∑
τi∈HP(k)

⌈
Tk

Ti

⌉
Ci

for harmonic periods and t ≤ Tk, Equation (29) holds for some
t ∈ (0, Dk] = (0, Tk] if and only if Equation (29) holds for t =
Tk, i.e., it is sufficient to check only t = Tk in Lemma 3.

While our schedulability test is generally applicable to all
T-FP scheduling algorithms, we note that it reduces to the
schedulability test proposed by Liu et al. [52] if applied to
RM scheduling. Although that schedulability test by Liu et al.
was originally only shown to be sufficient, in the following
we prove that it is even exact.

Corollary 5 (Exactness of [52]). Let T be a set of synchronous
harmonic tasks with dynamic self-suspension and implicit
deadlines. The following is an exact schedulability test under
RM scheduling: For all τk ∈ T, we have

Ck + Sk

Tk
+

∑
τi∈HP(k)

Ci

Ti
≤ 1. (33)

Proof. Under RM scheduling, we have
⌈
Tk

Ti

⌉
= Tk

Ti
for all τi ∈

HP(τk). Therefore, Equation (32) from Lemma 4 simplifies to
Ck + Sk +

∑
τi∈HP(k)

Tk

Ti
Ci ≤ Tk. Dividing both sides by Tk

yields Equation (33).

In Section IV, we show that Suspension-Aware Deadline-
Monotonic (SADM), i.e., assigning priorities to tasks τk

according to Dk − Sk, is an optimal T-FP priority assignment
for synchronous frame-based tasks. However, SADM is not
optimal for synchronous harmonic tasks and dynamic self-
suspension, even for tasks with implicit deadlines.

Lemma 6 (Non-Optimality of SADM, harmonic). In general,
even with implicit deadlines, SADM does not provide optimal
T-FP priority assignment for synchronous harmonic tasks T
with dynamic self-suspension.

Proof. We prove that SADM is not optimal in the general case
by a counterexample. Suppose we have a system T with just
two tasks, characterized as follows.

• τ1 ∈ Per(3, 0) ∩DL({3}) ∩WCET (1) ∩DynSus(1)
• τ2 ∈ Per(9, 0) ∩DL({9}) ∩WCET (1) ∩DynSus(6)

Since T1 − S1 = 2 and T2 − S2 = 3, then under SADM,
τ1 is prioritized over τ2. By Equation (32), task τ2 is not
schedulable, i.e.,

C2 + S2 +

⌈
T2

T3

⌉
C1 = 1 + 6 + 3 · 1 = 10 > T2 = 9. (34)

However, if τ2 is prioritized over τ1, then

C2 + S2 ≤ T2 (35)

C1 + S1 +

⌈
T1

T2

⌉
C2 = 3 ≤ T1 = 3, (36)

i.e., tasks τ1 and τ2 are both schedulable.

However, SADM is still optimal if certain conditions are
fulfilled as identified in the following lemma. The proof that
these conditions are sufficient for optimality is in the appendix.

Lemma 7 (Conditions for Optimality of SADM, harmonic). If
one of the following conditions holds, then SADM is optimal:
(a) Tasks in T have implicit deadlines, and for all τi, τj ∈ T

with (Ti − Si) ≤ (Tj − Sj), we have Ti ≥ Tj .
(b) Tasks in T have implicit deadlines, and for all τi, τj ∈ T

with (Ti − Si) ≤ (Tj − Sj), we have Tj · (Cj + Si) ≥
Ti · (Cj + Sj).

Proof. The proof of the two conditions for SADM optimality
can be found in Appendix A.

For cases where SADM is not optimal, in the following we
show that the Optimal Priority Assignment (OPA) algorithm,
originally proposed by Audsley in [6], [7], can be applied to
find a schedulable T-FP priority assignment (if one exists). As
the name implies, OPA always finds an optimal priority assign-
ment if one exists. However, to apply OPA, the corresponding
schedulability analysis must be OPA compatible.

Definition 8 (OPA compatibility; Reformulated from [25]).
A schedulability test is OPA compatible if the following
conditions hold:

(C1) The schedulability of task τi may depend on indepen-
dent properties of higher-priority tasks, but not on any
properties that depend on their relative ordering.

(C2) Similarly, for lower-priority tasks.



Algorithm 1: OPA Algorithm
1 Input: Set of tasks T, schedulability test S
2 Output: A schedulable T-FP priority assignment (if one

exists)
3 forall priority levels j, lowest first do
4 forall unassigned tasks τk ∈ T do
5 if τk is schedulable at priority j according to S

with all unassigned tasks assumed to have higher
priorities then

6 Assign τk to priority j
7 break (continue outer loop)

8 return UNSCHEDULABLE

9 return priority assignments

(C3) Say tasks τi and τj are assigned adjacent priorities, pi >
pj . If τj is schedulable with this assignment, it cannot
become unschedulable if the priorities are swapped.

The OPA algorithm calls the schedulability test at most
O(n2) times (where n is the number of tasks in T) according
to the procedure in Algorithm 1, which we reproduce from [25,
Algorithm 1] in our notation.

Theorem 9 (Optimality of OPA, harmonic, constrained dead-
line). The schedulability test from Lemma 3 is OPA com-
patible. Therefore, OPA can derive an optimal T-FP priority
assignment.

Proof. This follows from the conditions for OPA compatabil-
ity from Definition 8. (C1) is satisfied by the commutative
property of addition: Equation (29) is independent of the
relative order of higher-priority tasks. (C2) is satisfied since pa-
rameters of lower-priority tasks don’t appear in Equation (29),
i.e., they do not contribute to schedulability of τk. And (C3) is
satisfied: if a task τk is schedulable, and it is swapped with the
next higher-priority task, then it remains schedulable because
an element is removed from the sum in Equation (29).

Time Complexity: For each τk, Lemma 3 is equivalent to
asking for the worst-case response time of a task system Tk

consisting of the non-suspending versions (i.e., considering
only Ci without Si of τi ∈ HP(k)) of the tasks HP(k) and
a modified suspension-oblivious task replacement τ ′k for τk
with processing times C ′

k := Ck + Sk ≤ Dk ≤ Tk. Similarly,
Lemma 4 is equivalent to asking for the schedulability of task
τ ′k in the corresponding task system Tk.

In Tk, the lowest-priority task is τ ′k and its
worst-case response time can be computed in time
O(|HP(k)| log(|HP(k)|)) ≤ O(n log n) according to Nguyen
et al. [63]. Therefore, testing Equation (29) for a single task
τk can be done in O(n log n) time. Furthermore, testing
Equation (32) for a single task τk can be done in O(n) time.

For a set T of n tasks, assigning SADM priorities requires
sorting tasks τk according to (Dk − Sk), which takes time
O(n log n). Since testing the schedulability of a task τk takes
O(n) time for implicit-deadline task systems (respectively,
O(n log n) time for constrained-deadline task systems), the
overall SADM priority assignment and schedulability test take

in total O(n2) time (respectively, O(n2 log n) time). OPA runs
in time O(n2 × x) where x is the time complexity to check
schedulability for an individual task. Therefore, the overall
OPA approach takes in total O(n3) time for implicit-deadline
task systems (respectively, O(n3 log n) time for constrained-
deadline task systems). Since SADM is asymptotically faster,
the time complexity to first assign SADM priorities while also
checking both the optimality of the priorities and the resulting
schedulability, then (if the resulting priority assignment is not
schedulable but is also not optimal) using OPA is no worse
than running OPA only. And, if SADM is found to be optimal
or to assign schedulable priorities, then OPA is unnecessary.

VI. EXTENSIONS AND LIMITATIONS

Seemingly, the problem of finding optimal priority assign-
ment for T-FP scheduling can be resolved whenever we find
an exact schedulability test that is OPA compatible. In this
section, we demonstrate the limitations either due to the non-
existence of such an exact test in Section VI-A for sporadic
real-time tasks with dynamic self-suspension or due to the
difficulty to construct an exact test in Sections VI-B and VI-C
when the suspension pattern has certain fine-grained structures.
Specifically, we show that such an OPA-compatible exact
schedulability test cannot exist for sporadic tasks. Further-
more, we show that with fixed numbers of suspension intervals
or segmented self-suspending tasks, our analysis remains only
exact for frame-based constrained-deadline tasks. Therefore, in
future work, the extension of our approach to tasks with fixed
numbers of suspension intervals or segmented self-suspending
tasks requires the design of new schedulability tests which
are OPA compatible. For sporadic tasks, the development of
optimal scheduling algorithms requires completely new ap-
proaches or a refinement of the OPA compatibility conditions.

A. Sporadic Tasks

To extend our approach to sporadic tasks, i.e.,

τi ∈ Spor(Ti) (37)

for all τi ∈ T, we need to find a schedulability test which is
exact and OPA compatible. However, as discussed by Liu et
al. [52], it is potentially difficult to derive exact schedulability
tests for sporadic self-suspending tasks. The underlying reason
is the back-to-back influence of self-suspension behavior and
release pattern to find the worst-case.

While the difficulties in the analysis were only indicated
in [52], an actual concretization for frame-based or harmonic
sporadic tasks is missing. While frame-based or harmonic peri-
ods potentially limit the search space for worst-case scenarios
significantly, the complexity of an exact analysis remains
unclear. In the following we show that even if an exact
analysis for sporadic self-suspending tasks can be found, that
it cannot be OPA compatible. Consequently, the OPA approach
is infeasible in the presence of sporadic self-suspending tasks.

Assume an exact schedulability test T . Then we consider
the implicit-deadline task set

• τ1 ∈ WCET (1) ∩DynSus(1) ∩ Spor(10) ∩DL({10})



τ1
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τ3
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(a) τ3 not schedulable if τ1 has higher priority than τ2.
τ2

τ1

τ3

0 2 4 6 8 10 12 14 16 18

(b) τ3 schedulable if τ2 has higher priority than τ1.

Figure 1: Example showcasing that exact schedulability tests
for sporadic tasks violate the conditions for OPA compatibility.

• τ2 ∈ WCET (6) ∩DynSus(2) ∩ Spor(10) ∩DL({10})
• τ3 ∈ WCET (1) ∩DynSus(0) ∩ Spor(10) ∩DL({10})

The schedulability of task τ3 depends on the ordering of tasks
τ1 and τ2. Specifically, as depicted in Figure 1, τ3 can miss
deadlines if τ1 has a higher priority than τ2. However, if τ2
has a higher priority than τ1, then within every interval of
10 time units, τ3 can execute for at least 1 time unit, i.e., τ3
is schedulable. Since any exact schedulability test T has to
identify the correct schedulability for τ3, it has to take the
ordering of τ1 and τ2 into account. Hence, T has to violate
(C1) from Definition 8, and is therefore not OPA compatible.

We note that in the example every task has the same period
and subsequent job releases occur after exactly the minimum
inter-arrival time. Therefore, the example is also valid to show
that exact schedulability tests for periodic or frame-based tasks
with unspecified phase cannot be OPA compatible.

We conclude that the OPA-based procedure of this work is
unsuitable to find optimal scheduling algorithms for sporadic
tasks. Instead, new approaches have to be explored, or more
refined conditions for OPA compatibility must be developed.

B. Fixed Number of Suspension Intervals

This subsection explores whether our approach applies to
dynamic self-suspending tasks with fixed numbers of suspen-
sion intervals, i.e., for all τi ∈ T,

τi ∈ DynSus(Si) ∩NumSus(mi). (38)

To that end, we start by considering frame-based tasks with
constrained deadlines. Since DynSus(Si) ∩ NumSus(mi) ⊆
DynSus(Si), we know that Lemma 1 still provides an upper
bound on the response time of any task τk. However, due
to the additional restriction (τi ∈ NumSus(mi)), it seems at
first glance that Lemma 1 is only sufficient but not necessary.
However, the proof of the necessary condition of Lemma 1
only requires task τk to suspend at most once. Therefore,
the bound Rk from Lemma 1 is exact. Consequently, The-
orem 2 applies, and the SADM is an optimal T-FP scheduling
algorithm. Therefore even when τk only suspends at most
once, the optimality of SADM (achievable in O(n log n) time

τ1

τ2

0 2 4 6 8 10 12 14
R2 = 11

Figure 2: Example showcasing invalidity of Lemma 4.

complexity) is ensured for synchronous, constrained-deadline
frame-based dynamic-suspension tasks.

This result is very interesting as the same setting under
segmented self-suspension (with at most one fixed suspension
interval) is strongly NP-hard. It may seem to be counter-
intuitive as the dynamic self-suspension problem is considered
to be more difficult than the segmented self-suspension prob-
lem. However, the dynamic self-suspension indeed results in a
simple worst-case pattern to be handled and analyzed, used in
the proof of Lemma 1. We note that this is not the first counter-
intuitive scenario in real-time systems. For example, as shown
in Table I, the scheduler design problem for a sporadic real-
time task system is indeed easier than the same problem for
an asynchronous, periodic task system.

For harmonic tasks, the exact tests are formulated in
Lemma 3 for constrained-deadline tasks and in Lemma 4 for
implicit-deadline tasks. The following example shows that the
tests are only sufficient but not necessary if the tasks have a
fixed number of suspension intervals:

• τ1 ∈ WCET (2)∩DynSus(0)∩NumSus(0)∩Per(4, 0)
• τ2 ∈ WCET (1)∩DynSus(6)∩NumSus(1)∩Per(12, 0)

For k = 2, Lemmas 3 and 4 state that a deadline miss can be
observed. However, the worst case, as depicted in Figure 2,
is R2 = 11. The reason is that Lemmas 3 and 4 fail to
detect the amount of suspension of τ2 that occurs while τ1 is
being executed in the interval [4, 6]. To extend our approach
to harmonic tasks with fixed numbers of suspension intervals,
the development of an exact OPA-compatible schedulability
test remains an open problem.

C. Segmented Self-Suspending Tasks

For segmented self-suspending tasks, i.e.,

τi ∈ SegSus(C1
i , S

1
i , C

2
i , S

2
i , . . . , S

mi
i , Cmi+1

i ), (39)

the limitations are the same as the limitations for fixeds
number of suspension intervals in Section VI-B.

That is, for frame-based tasks with constrained
deadlines, the test of Lemma 1 is still exact,
because SegSus(C1

i , S
1
i , C

2
i , S

2
i , . . . , S

mi
i , Cmi+1

i ) ⊆
DynSus(

∑
j C

j
i ,
∑

j S
j
i ), and the worst case from Lemma 1

is achieved if all suspension intervals of higher-priority tasks
are 0. Therefore, our results from Section IV directly apply,
and SADM is an optimal T-FP scheduling algorithm.

Finally, for harmonic tasks, the task set T = {τ1, τ2} with
• τ1 ∈ SegSus(2) ∩ Per(4, 0)
• τ2 ∈ SegSus(0, 6, 1) ∩ Per(12, 0)

shows that Lemmas 3 and 4 are only sufficient but not
necessary, with worst case depicted in Figure 2, because



Lemmas 3 and 4 are not aware of suspension of τ2 occurring
at the same time as execution of τ1 during [4, 6]. The design
of an exact OPA-compatible test remains an open problem.

VII. EVALUATION

This paper presents both optimal priority assignment
schemes and exact schedulability tests for frame-based and
synchronous, harmonic task sets with dynamic self-suspension
and constrained deadlines. To evaluate our approach, we first
present a case study of the tasks that make up Autoware’s
default LiDAR pipeline [40], showing that the required task
period can be reduced significantly. Besides this illustration of
real-world applicability, we also evaluate our approach using
synthetically generated task systems, examining the gain in
acceptance compared to the prior state-of-the-art techniques
for dynamic self-suspension.

A. Case Study: Analysis of Autoware

Autoware [9], [40], built on ROS2 [57], is an open-source
framework for autonomous driving, supporting a broad range
of vehicles and applications. The Autoware task system is
highly complex, and real-time schedulability analysis chal-
lenge is further exacerbated by the fact that many of its tasks
offload image processing and ML models to a GPU. In this
case study, we first present the suspension patterns of five
tasks from Autoware’s default LiDAR processing pipeline,
then highlight the benefit of optimal priority assignment.

Tasks Evaluated: We evaluate the two primary task
chains in Autoware v1.0’s “LiDAR pipeline (default)” com-
ponent [10], comprising the following five tasks (i)–(v):

(i) lidar_centerpoint (LC) detects dynamic objects in 5
phases. First, it retrieves and checks the validity of
LiDAR point cloud data. Second, it performs GPU pre-
processing, including data enqueuing and transformation,
buffer initialization, voxelization, and feature generation.
Third, it launches GPU operations for detection model
inference. Fourth, it generates bounding boxes on the
GPU. Fifth, it translates the results into readable messages
for downstream publication.

(ii) obstacle_pointcloud_based_validator (OPV), which per-
forms CPU-based object validation through density
checks of surrounding points within a specified radius.

(iii) compare_map_filter (CMF), which uses map data to filter
out the ground surface.

(iv) euclidean_cluster (EC), which performs CPU-based point
clustering to enable object classification.

(v) shape_estimation (SE), which produces a label-based
fit of refined object shapes to the point clusters in 3
steps. First, incoming sensor data is transformed into
the necessary structure. Second, it performs GPU-based
shape estimation. Third, results are post-processed and
published. Both the LC and SE tasks self-suspend due to
GPU offloading; notably, the LC task suspends 3 times
at dynamic intervals.

Timing Measurements: We instrumented Autoware v1.0
on a system with an AMD Ryzen 9 3900X 3.8GHz CPU

Task LC OPV CMF EC SE
Ci 21 7.8 115 137 10.4
Si 325 0 0 0 0.41

Table III: Autoware Timing Measurements (ms).

and an NVIDIA GeForce RTX 3070 Ti GPU running Linux
6.8.0-48-generic. For each CPU-based task, we measured the
execution time of each job; for each task with GPU offloading,
we measured the total CPU time, total suspension time, and
the execution time before and after suspension. Measurements
were performed over 698 task iterations.

Distributions for the LC task’s phases are shown in Figure 3.
Notice the non-uniformity in the suspension times of each
phase, as well as the CPU execution before and after the GPU
offloading phases. Moreover, due to these dynamic execution
patterns, using the worst-observed execution time of each
phase to characterize the task is pessimistic: the total worst-
observed times across CPU phases is 36.37ms, while the
total across GPU phases is 380ms. Using the dynamic self-
suspension model allows us to be more optimistic, since we
need to only characterize a single worst-case value for each
task’s execution and suspension times, resulting in the values
specified in Table III.

Impact of Priority-Assignment: Using the measurements
above, we evaluate the reduction of periods offered by optimal
priority assignments. That is, given a priority assignment,
an analysis is applied, and the minimal period to achieve
schedulability is determined. Since we are considering frame-
based tasks, RM priority assignment is equivalent to giving an
arbitrary (i.e., random) priority assignment, therefore all 120
possible priority assignments are considered. Figure 4 shows
the required periods computed for all 120 possible priority
assignments using the following analyses:
SUSPOBL This is the well-known, efficient yet pessimistic,

suspension-oblivious analysis [52], where suspension is
treated as execution. In other words, a set of self-
suspending tasks with execution times Ci and suspension
times Si are tested as non-suspending preemptive tasks
with execution times C ′

i = Ci + Si.
UNI This is the Unifying Response Time Analysis proposed

in [21], which achieves tight analytical results by uni-
fying carry-in-based and jitter-based approaches. This is
considered the prior state of the art.

EXACT This is the exact analysis proposed in this paper that
safely ignores the suspension behavior of higher-priority
tasks. Specifically, this subsection applies Lemma 1.

We observe that the result of SUSPOBL is not impacted
by the priority-assignment because it analyzes the tasks as
non-self-suspending, and always determines a required period
of 617ms. Furthermore, UNI has the same performance as
EXACT, which is due to the fact that only 5 tasks are
considered and not all tasks have self-suspension behavior,
leaving not much need for UNI to over-approximate the impact
of self-suspension. Considering all possible periodizations,
then in median a period of 483ms is required to achieve
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Figure 4: Impact of priority assignment.

schedulability, compared to only 346ms with the optimal
SADM priority assignment, which is a reduction of 28.36%.

B. Synthetic Task Systems

The metric of comparison for the synthetic task set eval-
uation is the acceptance ratio with respect to the task set
utilization, i.e., the percentage of task sets deemed schedulable.
Note that, in contrast to our proposed exact tests, all considered
approaches from the prior work are only sufficient in the sense
that an accepted task set is guaranteed to be schedulable, but
a rejected task set is not guaranteed unschedulable.

Generating Task Sets: We separately consider frame-based
and harmonic task systems; for each of these, we consider
implicit and constrained deadlines. We generate systems of 5,
10, and 20 tasks. For each type of task system, we consider
total utilizations in the range [0.02, 1.0] in steps of 0.02. For
each value, we generate 1000 task sets. The total utilization is
distributed in an unbiased random fashion among the tasks in
each task set using the UUniFast algorithm [12]. For frame-
based tasks, periods Ti are randomly selected from a log-
uniform distribution (per [30]) in the range [100, 10 000]. For
harmonic tasks, periods are selected uniformly from the set
{100 · 2n | 0 ≤ n ≤ 7}. Execution times Ci are then
derived from each task’s utilization and period. For each task,
a suspension ratio si is selected uniformly from the range
[0.01, 0.99]. The total dynamic self-suspension time is then
assigned as Si = si · (Ti − Ci) per the methodology in [36].
For constrained-deadline task systems, each task has a deadline
Di drawn uniformly at random from the range [Ci + Si, Ti],
since a task with a deadline less than the sum of the execution
and suspension times cannot be scheduled.

Considered Analysis: For the 1000 task sets generated for
each combination of task model, task set size, and suspension
range, we measure the acceptance ratio according to the
following T-FP assignments and schedulability analyses.

For all task sets, we evaluate schedulability using the exact
analysis presented in this paper (EXACT), the Unifying Re-
sponse Time Analysis framework (UNI) [21], and suspension-
oblivious analysis (SUSPOBL) [52]. Please note that while
for Section VII-A only Lemma 1 was utilized for EXACT,
this subsection applies Lemma 1, Lemma 3 or Lemma 4,
depending on the configuration of the task set.

For all task sets, we evaluate priority assignment
by comparing our Suspension-Aware Deadline-Monotonic
(SADM), where tasks are prioritized according to Di − Si

(i.e., lowest Di − Si has highest priority) to the tradi-
tional Deadline-Monotonic (DM). We additionally consider
Execution-Monotonic (EM), where priorities are assigned
according to Ci (i.e., lowest Ci has lowest priority); and
Suspension-Aware Execution-Monotonic (SAEM) where tasks
are prioritized according to Ci + Si—again, lowest value
meaning lowest priority. For harmonic tasks, we also use the
Optimal Priority Assignment (OPA) algorithm from [6], [7],
listed in this paper as Algorithm 1.

Results for Frame-Based Tasks: The first two columns of
Figure 5 show the acceptance ratios for frame-based tasks with
implicit and constrained deadlines, respectively. These results
illustrate the power of SADM: SADM priority assignments
provide significantly better schedulability than the other as-
signments tested, both under exact analysis, and the earlier
unifying framework in [21]. Moreover, the exact analysis
provides a strong improvement over the prior state of the art:
for each priority assignment, the exact analysis dominates the
unifying framework by a wide margin, and the simple and
well-known suspension-oblivious analysis fails to schedule
task sets with processor utilization of only a few percent.

We note that Corollary 5 says that the test given in [52] is
exact for frame-based tasks with dynamic self-suspension and
implicit deadlines. However, it requires Rate-Monotonic (RM)
priority assignment, and is therefore equivalent to the accep-
tance of “EXACT_DM”. The results of this test are shown
in the plots in the first column of Figure 5, underperforming
SADM by a wide margin.

Results for Harmonic Tasks: The third and fourth columns
of Figure 5 show the acceptance ratios for synchronous,
harmonic tasks with implicit and constrained deadlines, re-
spectively. As predicted by the theory, OPA with exact analysis
dominates the acceptance ratio, and the gap widens as the
number of tasks increases. Nonetheless, SADM remains a
powerful tool: although it is not always optimal, it remains
better than the other priority assignments considered, and
provides better asymptotic complexity than OPA. In fact, we
observe that even the unifying framework with SADM tends
to outperform exact analysis with DM, SAEM, and EM.
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Figure 5: Acceptance ratios for randomly-generated synthetic task sets.

As before, the “EXACT_DM” acceptance data shown in
the third column of Figure 5 reflects RM priority assignments
(since these are implicit-deadline tasks), and per Corollary 5
is equivalent to the test in [52]. Though it is an efficient and
exact test, SADM and OPA priorities, coupled with the exact
tests we present, remain significantly more optimistic while
still running in polynomial time.

VIII. CONCLUSION

Despite the existence of extensive examination of self-
suspending tasks, the optimality of scheduling algorithms for
dynamic suspension is only barely addressed by the prior
work. This paper explores optimal priority assignment for
synchronous harmonic and frame-based tasks with dynamic
self-suspension and constrained deadlines, built upon novel
exact schedulability tests.

Specifically, this work goes beyond traditional analysis
approaches (i.e., modeling suspension as execution, blocking
or jitter) by determining system configurations, where it is
safe to ignore the suspension behavior of higher-priority tasks,
to built exact schedulability tests. The new tests are used to
show that Suspension-Aware Deadline-Monotonic (SADM) is

an optimal priority assignment for frame-based tasks. Further-
more, though SADM does not remain optimal in many cases
for synchronous harmonic tasks, Audsley’s Optimal Priority
Assignment (OPA) algorithm can be applied. The evaluation
shows that the proposed exact schedulability tests significantly
outperform those of the prior state of the art. Moreover,
optimal priority assignments lead to a substantial increase in
schedulability.

We note that, although the analysis in this paper primar-
ily applies to synchronous frame-based and harmonic task
systems, it is nonetheless broadly applicable in real-world
applications. Frame-based task scheduling has seen wide adop-
tion in embedded cyber-physical and IoT devices, especially
those with energy or thermal constraints [3], [31], [44], [49],
[73]. It is also a useful model for scheduling execution along
processing chains, e.g., in video streams (where an execution
frame corresponds to processing of a single video frame) [69]
and in the Autoware LiDAR pipeline that served as a case
study in this paper. Moreover, synchronous harmonic task
systems (which are a generalization of synchronous frame-
based task systems, i.e., Per(T, 0) ⊂ Per(TH , 0) ) are often
constructed for convenience and ease of analysis. Indeed, in



many applications, task periods may be somewhat flexible,
and methods exist for assigning harmonic periods at design
time [59]–[61]. Moreover, many control systems demand har-
monic rates, and in applications that capture and synchronize
frames from multiple sensing devices, harmonic task periods
guarantee consistent temporal alignment [68].

While this work focuses on constrained-deadline tasks, the
design of exact schedulability tests and optimal priority assign-
ments for arbitrary-deadline systems remains an open problem.
Such examination needs further exploration to resolve carry-in
issues inherent to arbitrary-deadline scheduling.
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APPENDIX A
PROOFS OF CONDITIONS FOR SADM OPTIMALITY

In this section we prove the two conditions for the optimal-
ity of SADM, formulated in Lemma 7.

A. Proof of condition (a)

Assume a task system T such that for all τk ∈ T, τk is
described by Equation (13). Furthermore, assume that for
every τi, τj ∈ T, if (Ti − Si) ≤ (Tj − Sj), then Ti ≥ Tj .

Without loss of generality, let tasks be indexed in priority
order, i.e., HP(k) = τk+1 ∪ HP(k + 1). Further, assume the
system is schedulable, i.e., for all τk ∈ T, Equation (32)
holds. Now, assume that there exist tasks τi, τj , i < j,
where (Di − Si) < (Dj − Sj). Then it follows that there are
adjacent tasks τk, τk+1 where (Dk − Sk) < (Dk+1 − Sk+1).
Since T is schedulable, Equation (32) says that for task τk,

Ck +

⌈
Tk

Tk+1

⌉
Ck+1 +

∑
τi∈HP(k+1)

⌈
Tk

Ti

⌉
Ci ≤ Tk − Sk (40)

By the above-stated condition, Tk ≥ Tk+1. If Tk = Tk+1,
then the proof in Theorem 2 of SADM optimality for frame-
based tasks says that both τk and τk+1 remain schedulable
even if their priorities are swapped.

Now, assume Tk > Tk+1. Then since periods are harmonic,
there exists some a ∈ N, a > 1 such that Tk = a · Tk+1.
Then: Ck+Ck+1+

∑
τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci < Ck+a ·Ck+1+∑

τi∈HP(k+1)

⌈
a·Tk+1

Ti

⌉
Ci. Since

⌈
Tk

Tk+1

⌉
= a and

⌈
Tk+1

Tk

⌉
=

1, this can be restated as:

Ck+1 +

⌈
Tk+1

Tk

⌉
Ck +

∑
τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci

< Ck +

⌈
Tk

Tk+1

⌉
Ck+1 +

∑
τi∈HP(k+1)

⌈
Tk

Ti

⌉
Ci

By applying Equation (40), we obtain Ck+1 +
⌈
Tk+1

Tk

⌉
Ck +∑

τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci < Tk − Sk, and since Tk − Sk <

Tk+1 − Sk+1, we have:

Ck+1 +

⌈
Tk+1

Tk

⌉
Ck +

∑
τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci < Tk+1 − Sk+1

In particular, τk+1 remains schedulable if τk is assigned a
higher priority. Furthermore, from Equation (40) we obtain
Ck +

∑
τi∈HP(k+1)

⌈
Tk

Ti

⌉
Ci ≤ Tk − Sk, i.e., τk also remains

schedulable. It is clear from Equation (19) that the schedula-
bility of other tasks is unaffected when the priorities of τk
and τk+1 are swapped. By swapping priorities of all such
adjacent tasks so that (Tk − Sk) ≥ (Tk+1 − Sk+1), an SADM
T-FP priority assignment is achieved.

B. Proof of condition (b)
Assume a task system T such that for all τk ∈ T,

τk is described by Equation (13). Furthermore, assume
that for every τi, τj ∈ T, if (Ti − Si) ≤ (Tj − Sj), then
Tj(Cj + Si) ≥ Ti(Cj + Sj).

Without loss of generality, let tasks be indexed in priority
order, i.e., HP(k) = τk+1 ∪ HP(k + 1). Further, assume the
system is schedulable, i.e., for all τk ∈ T, Equation (32)
holds. Now, assume that there exist tasks τi, τj , i < j,
where (Di − Si) < (Dj − Sj). Then it follows that there are
adjacent tasks τk, τk+1 where (Dk − Sk) < (Dk+1 − Sk+1).
Since T is schedulable, Equation (40) holds true.

If Tk ≥ Tk+1, then by the proof in Section A-A, the system
remains schedulable if the priorities of τk and τk+1 swap.

Therefore, it is sufficient to consider the case Tk < Tk+1.
Specifically, if Tk < Tk+1, then there exists some a ∈ N,
a > 1 such that a ·Tk = Tk+1. From Equation (40), we know:

aCk + a

⌈
Tk

Tk+1

⌉
Ck+1 + a

∑
τi∈HP(k+1)

⌈
Tk

Ti

⌉
Ci ≤ aTk − aSk

We derive: aCk + a
⌈

Tk

Tk+1

⌉
Ck+1 +

∑
τi∈HP(k+1)

⌈
aTk

Ti

⌉
Ci ≤

aTk − aSk Since
⌈
Tk+1

Tk

⌉
= a, aTk = Tk+1, and

⌈
Tk

Tk+1

⌉
= 1,

we have:
⌈
Tk+1

Tk

⌉
Ck + aCk+1 +

∑
τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci ≤

Tk+1 − aSk, or equivalently:

Ck+1 +

⌈
Tk+1

Tk

⌉
Ck +

∑
τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci

≤ Tk+1 − aSk − (a− 1)Ck+1

By the condition stated above, we obtain that
Tk+1(Ck+1 + Sk) ≥ Tk(Ck+1 + Sk+1). This is equivalent
to Sk+1 ≤ Tk+1Sk

Tk
+

(
Tk+1

Tk
− 1

)
Ck+1. Furthermore, since

a = Tk+1

Tk
, we have Sk+1 ≤ aSk + (a− 1)Ck+1. Therefore,

Ck+1 +

⌈
Tk+1

Tk

⌉
Ck +

∑
τi∈HP(k+1)

⌈
Tk+1

Ti

⌉
Ci ≤ Tk+1 − Sk+1

In particular, τk+1 remains schedulable if τk is assigned a
higher priority. By swapping adjacent tasks, similar to the
proof in Section A-A, we show that SADM is optimal.
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