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Abstract
Hardware performance counters (HPCs) enable the mea-

surement of microarchitectural events, which are crucial for
tracking and predicting program behavior. High-fidelity mea-
surement and precise attribution are essential for accurate
profiling. However, existing profiling tools have fundamen-
tal challenges in both aspects. In measurement, numerous
events compete for limited hardware monitoring resources;
while for attribution, applications have diverse requirements,
but systems provide limited support. Existing tools mitigate
the former limitation through event multiplexing, but this
approach introduces non-trivial errors. The latter limitation,
however, remains largely unaddressed.

This paper introduces Tintin, an HPC profiling infrastruc-
ture with a modular three-component design that addresses
both challenges. Tintin introduces mechanisms to mitigate
multiplexing errors by characterizing uncertainty at runtime,
scheduling events to minimize it, and reporting uncertainty
to applications. It also proposes the Event Profiling Context
(ePX) as a new OS primitive to unify diverse profiling re-
quirements. Tintin is evaluated using benchmarks as well as
real-world resource orchestration, performance debugging,
and intrusion detection systems, to demonstrate its ability to
improve hardware profiling with low runtime overhead.

1 Introduction

Performance profiling involves measuring runtime cost met-
rics and attributing these measurements to a portion of one
or more programs’ execution. Modern processors provide
hardware performance counters (HPCs) that can profile mi-
croarchitectural events (e.g., cache loads and misses). The
hardware events collected from HPCs, referred to as HPC
data, are valuable across a wide range of application do-
mains, including debugging [5,23,49,50], workload optimiza-
tion [8, 15, 35], power analysis [58, 60, 76], diagnostics [8],
online resource provisioning [25, 27,37,54,72], and intrusion
detection [19, 20]. However, existing profiling infrastructures
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Figure 1: An event profiling infrastructure must accurately measure
and attribute microarchitectural events to a heterogeneous set of
profiling scopes, while managing a limited number of HPCs.

for hardware events have fundamental limitations in both
measurement and attribution.

Problems. When measuring HPC data, each individual HPC
can be programmed to record only a single type of event at
a time, but the number of events of interest (typically tens to
hundreds) often exceeds the available HPCs (usually 2–6), as
shown in Figure 1. Therefore, many existing solutions [44,46]
adopt event multiplexing, scheduling events in a time-shared
manner (where each event typically receives an equal portion
of time). Observed counts are interpolated to estimate the
total; however, this multiplexing inevitably introduces errors,
as events may remain unmonitored for extended intervals.
Most approaches to avoiding multiplexing involve running
the target application multiple times, each time monitoring a
different subset of events, and then merging the results into
a single trace [31, 41, 48]. However, these offline techniques
are impractical for emerging applications that use HPC data
as real-time input for online decision-making [25, 35, 54, 72],
such as dynamic resource orchestration.

Furthermore, hardware event attribution remains challeng-



ing. Unlike software events [6] (e.g., memory usage and page
faults) that are directly tied to profiled program execution,
hardware events are counted independently by standalone
HPCs. Attribution requires system support to align these
events with program execution. However, there is a fundamen-
tal mismatch between the abstractions provided by existing
tools [10, 33, 53, 55, 73] and application requirements. Exist-
ing tools only allow profiling events for specific tasks (i.e.,
threads/processes) or cores. For task-level profiling, HPCs
start counting when the target task is scheduled in, then stop
when it is switched out. While this design is straightforward
to implement – in Linux, events are bound to the task_struct
and logic is added to the CPU rescheduling routine – it means
the profiling scope1 is bound to schedulable entities (e.g.,
task/core switches). However, there is a significant need to
define more flexible profiling scopes in practice. For exam-
ple, developers may want to profile events for specific code
regions [1, 4, 35, 62, 64] as shown in Figure 1. Current ab-
stractions are insufficient for these heterogeneous profiling
requirements, leading to event misattribution. This hetero-
geneity might also cause conflicts between overlapping scopes
that result in some events remaining unmeasured.

Our Solution – Tintin. This paper proposes Tintin, a new
hardware event profiling infrastructure that harnesses two key
ideas to address the aforementioned challenges. First, Tintin
characterizes multiplexing errors as uncertainty at runtime.
Leveraging this, Tintin implements an event scheduling algo-
rithm to minimize the overall uncertainty. The algorithm is
grounded in real-time scheduling theory and is proven to be
optimal. Since uncertainty cannot be fully eliminated, Tintin
also reports it to the application via user-space interfaces; to
the best of our knowledge, this is the first profiling tool to
do so. We present case studies that demonstrate how these
reported values may improve application-level decision mak-
ing. Second, to address the inflexibility of attribution, Tintin
proposes to elevate profiling scopes via a first-class object,
the Event Profiling Context (ePX). Heterogeneous ePXs are
uniformly managed across the entire system, allowing for
flexible scope definition while resolving conflicts between
overlapping scopes by jointly scheduling their events.

The system design of Tintin consists of three modular ker-
nel components, each introducing techniques to improve accu-
racy and reduce overhead in realizing the basic design. Tintin-
Monitor simultaneously characterizes uncertainty while mea-
suring event counts. As ground truth is not available at run-
time, it estimates uncertainty using variance as a proxy. To re-
duce overhead, it adopts incremental variance updates. Tintin-
Scheduler represents event multiplexing as an elastic real-time
scheduling problem [12,13] to minimize total expected uncer-

1Here, we adopt definitions from Saltzer and Schroeder’s subject-object
model [56, 57]. Hardware events are the objects of profiling, while the cor-
responding sources of those events are the subjects. A “scope” therefore
defines a subject to profile. This could be execution on CPU core(s), across a
virtual machine, a single thread, or originating from a specific code segment.

tainty. It presents a novel extension of elastic scheduling to
multiple HPCs, assigning shares of HPC time and construct-
ing a schedule in quasilinear time. Tintin-Manager serves
as another level of indirection to uniformly handle and man-
age the heterogeneous attribution requirements originating
from user space. It extends Linux’s familiar perf_event API
to specify explicit profiling scopes with flexible granularity
and report uncertainty back to user space.

Summary of Results. Tintin is evaluated on three real-
world applications: Pond [37] for cloud resource provisioning,
DMon [35] for performance debugging, and the Diamorphine
rootkit [43] for intrusion detection. In these case studies, we
demonstrate that Tintin can be easily integrated into existing
applications in place of other profiling tools with minimal
adaptation. By tracking, minimizing, and reporting uncer-
tainty, Tintin allows Pond to predict latency sensitivity with
64% greater accuracy, and the AUC for Diamorphine rootkit
classification increases by 22.8%. Additionally, Tintin’s op-
erability to adjust targeted profiling scope allows DMon to
identify performance issues in a push-button fashion. Fur-
thermore, we conduct a comprehensive evaluation to assess
accuracy improvements, runtime overhead, and scalability
on SPEC 2017 [11] and PARSEC [9] benchmarks. Results
indicate that Tintin incurs low overhead (2.4%) while interpo-
lating multiplexed event counts 3.09× more accurately than
the state of the art.

Contributions. This paper proposes Tintin, a kernel infras-
tructure for hardware event profiling. It includes:

• An uncertainty-driven hardware performance measurement
mechanism that quantifies, reports, and schedules to mini-
mize estimated errors.

• A new OS primitive, the Event Profiling Context, to enable
flexible and accurate attribution while resolving compati-
bility issues between conflicting profiling scopes.

• The design, implementation, and evaluation of Tintin2, a
kernel hardware event profiling infrastructure with a three-
component modular structure.

2 Background

Performance Monitoring Counters. Modern processors
make hardware event profiling available to system software
via a per-core Performance Monitoring Unit (PMU), which
provides a set of programmable HPCs that can be configured
individually to measure a specific type of microarchitectural
event, e.g., cache or bus accesses, cache writebacks or re-
fills, branch misprediction, etc. When enabled, an HPC incre-
ments whenever its programmed event occurs. The number of
measurable events is substantial, typically exceeding several

2Source code is available at: https://github.com/WUSTL-CSPL/
tintin-kernel and https://github.com/WUSTL-CSPL/tintin-user.

https://github.com/WUSTL-CSPL/tintin-kernel
https://github.com/WUSTL-CSPL/tintin-kernel
https://github.com/WUSTL-CSPL/tintin-user
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Figure 2: The Linux perf_event subsystem multiplexes events on
limited HPCs. It is not aware of scope overlap; joint scheduling
and common attribution remain unsupported. If a per-core event is
pinned to an HPC, per-task events may be rejected, leading to mea-
surement starvation. perf_event supports both instrumented polling
and time- or event-triggered sampling. When sampling, events may
be undercounted when the sampling intervals do not align with task
context switches.

dozen on ARM processors (e.g., 58 on the Cortex-A53 [38]
and 151 on the Cortex-A78 [39]) and over one thousand on
Intel processors (e.g., 1,623 on HaswellX [75]).

2.1 Linux perf_event Subsystem

The Linux perf_event subsystem [65] is Linux’s kernel-level
abstraction layer for interacting with HPCs. It serves as the
de facto infrastructure widely utilized by many tools such as
PAPI [10], Intel EMON [33], VTune [55], pmu-tools [73],
and the Linux Perf utility [70]. It provides access to both
hardware-level HPC data and software-level data (e.g., mem-
ory footprint and tracepoints). This section discusses its hard-
ware aspects, which are the exclusive focus of Tintin.
Polling vs. Sampling. Events on HPCs can be monitored
through either polling [44,62] or sampling [21,74]. In polling,
HPCs are configured and enabled at explicit points during
program execution (via instrumented syscalls) and then read
at later points. With sampling, HPCs are read periodically,
either in time-triggered fashion at periodic intervals (e.g., by
explicit timer handlers or in the system timer interrupt rou-
tine) or in event-triggered fashion every time a pre-defined
threshold is reached (e.g., using Intel’s Precise Event-Based
Sampling (PEBS) hardware or ARM’s PMU interrupt). It is
worth noting that sampling does not necessarily incur less
overhead than polling. They in fact represent a trade-off be-
tween intrusiveness and precision. Polling typically requires
instrumentation but offers higher accuracy by placing calipers
at the boundaries of profiling scopes. In contrast, sampling
does not require instrumentation but suffers from misattribu-
tion, as it does not align events precisely with the target scope,
such as task context switches as shown in Figure 2.
Event Scheduling. When an HPC is configured to count a

particular event, we say that the event is scheduled on the
counter. If the number of events to be monitored exceeds the
number of available HPCs, they must time-share the counters,
being multiplexed in a round-robin fashion. Figure 2 presents
an illustrative example in which the available HPCs on the
CPU are limited to 4, while Process #1 requires monitoring
for 8 events. In this scenario, the events {e1, e2, e3, e4} are
allocated to the initial time slice, followed by the scheduling
of events {e2, e3, e4, e5} in the subsequent time slice.
Profiling Scope. The perf_event subsystem enables specifica-
tion of hardware event monitoring for either individual tasks
(processes/threads) or CPU cores. A key advantage of this
design is its simplicity as the kernel only needs to track spec-
ified events and their counts within existing data structures
for the profiled subject, e.g., the task_struct. It additionally re-
quires minimal additional logic in the task scheduler to switch
between the events associated with different tasks or cores.

Upon CPU task scheduling, perf_event first schedules
events bound to the current core before adding those asso-
ciated with the active process. Since events are bound to
per-core and per-task data structures, they are managed inde-
pendently, even if they share common events of interest. The
right side of Figure 2 illustrates this scenario: a user assigns
two events, {e4, e5}, to the current core; these are placed on
HPCs #2 and #3. Consequently, events {e4, e5} monitored
for Process #1 are not scheduled, even though they represent
the same event types, resulting in unnecessary starvation.

2.2 Sources of Uncertainty in HPC Profiling
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Figure 3: Uncertainty sources.

Sources of HPC measurement uncertainty can originate
from a combination of three factors: architectural uncertainty,
the operating system, and measurement method limitations,
as illustrated in Figure 3.
Architectural Uncertainty. This type of uncertainty is caused
by flaws in the microarchitecture. Several known sources of
such uncertainty have been studied in prior work.



• Skid effect [28, 74]: To support event-triggered sampling,
many PMUs can be configured to deliver an interrupt when
an HPC overflows. On some processors, additional instruc-
tions execute during the time delay between interrupt initia-
tion and signal delivery to the CPU; associated events may
be incorrectly counted or attributed.

• Event corruption [21]: On some Intel processors with
Hyper-Threading, certain event counts will be corrupted if
monitored by matching counters on the same physical core.

• Overcounting [67, 68]: Certain events will cause an unre-
lated counter to increment on several older x86 processors
from both Intel and AMD.

OS Uncertainty. Profiling might not yield identical results
across different runs of the same program, primarily because
the runtime environment can vary between measurements.
For example, factors such as OS activity, program scheduling
in multitasking environments, memory layout and pressure,
and multi-processor interactions may differ from run to run.
Measurement Method Uncertainty. Many tools have been
developed to facilitate the collection of HPC data through
various measurement methods. However, these methods of-
ten introduce uncertainty. For example, as discussed in the
previous section, the Linux perf_event subsystem provides
profiling support through several mechanisms, each contribut-
ing to potential measurement error. These include the data
collection technique (e.g., polling or sampling), the profiling
scope (e.g., thread, process, core, or multiple cores), and the
use of multiplexing. As polling and sampling each represent a
different trade-off between accuracy and intrusiveness, remov-
ing their uncertainty is out of Tintin’s scope. In fact, Tintin
works seamlessly with either technique.

3 Challenges and Pitfalls

Limited HPCs Compared to Events of Interest. Modern
CPUs support dozens to hundreds of types of events that can
be monitored. However, the number of available HPCs is
very limited; most processors provide only 2–6 HPCs per
physical core [70, 75], and this number is effectively halved
per logical core when Simultaneous Multithreading (SMT) is
enabled. Additionally, Linux reserves one HPC by default for
the watchdog timer, further reducing the counters available.
This creates a fundamental tension between the number of
events of interest and the available HPCs.
Can We Profile Fewer Events? Existing work has sought to se-
lect relevant events carefully for a given application. However,
the number of events of interest remains large. For example,
in [45], the 120 events available on an ARMv7-A CPU were
narrowed to just 34 of importance for predictive DVFS. Coun-
terMiner [41], an offline analysis tool for predictive modeling
with event counts, achieves the most accurate IPC predic-
tions for HiBench [32] workloads using ∼150 events. Fur-
thermore, some applications profile derived metrics, such as
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Figure 4: Preliminary examination of multiplexing and scope-based
errors. (Left) When the number of events exceeds the number of
HPCs, variation in reported event counts increases. (Right) A precise
definition of profiling scopes is also essential for accurate results.

Memory_Bound [35]. These combine as many as 16 individ-
ual events [18]. Pond [37], which we evaluate as a case study
in §8.1.1, provides a memory pooling model for cloud infras-
tructure. Its model takes 7 derived metrics as inputs, spanning
20 events on Intel Skylake.
Event Multiplexing Introduces Errors. The current approach
to managing this limitation is through event multiplexing.
In the Linux perf_event subsystem, events are scheduled
for monitoring in a time-shared fashion on the available
HPCs [2, 21, 47, 75]. HPC measurements for each event can
then be interpolated to estimate the total count. However, this
method unavoidably introduces errors, as the reported val-
ues are based on interpolation, and variance in event arrival
further contributes to inaccuracies in the results.
Examination of Multiplexing Error. To illustrate this effect,
we use the Linux Perf utility to profile the 541.leela_r Go en-
gine in the SPEC CPU®2017 benchmark suite [11] on an Intel
Xeon Gold 6130 Skylake CPU. The target PMU has 4 generic
counters, so we profiled 1–4 (non-multiplexing), 8, and 16 se-
lected events. The multiplexing frequency in the experiments
is set to the default value (4 ms) in Linux perf_event, which
aligns with the CPU task scheduling frequency. The mean
and standard deviation of reported LLC-load-misses over 10
runs are plotted in Figure 4. Without multiplexing, reported
event counts remain stable; they do not vary significantly with
the number of events profiled. However, when the number of
events exceeds the available counters, the reported metrics
vary significantly, as multiplexing fails to capture the true
characteristics of the workload [59, 75].

Heterogeneous Profiling Scopes. HPCs are simply counters
and are decoupled from the profiling scope. Therefore, profil-
ing infrastructure must align recorded events with program
execution on the CPU. Developing such mechanisms is chal-
lenging due to the heterogeneity of profiling requirements.
Incomplete Handling of Diverse Scopes. Applications re-
quire event attribution to diverse scopes, such as execution
instances [25, 37, 54] (e.g., a process, a core, a VM) or code
segments [1, 35, 62, 64] (e.g., functions, basic blocks). Exist-
ing abstractions only explicitly bind events to per-process or
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per-core scopes. While the sampling-based method can record
program counters (i.e., code addresses) and map events back
to source code using debugging tables, this approach cannot
filter events for a specific scope and suffers from sampling
bias, favoring frequently executed code [16].
Ignorance about Overlapping Scopes. Different scopes may
overlap both temporally (e.g., when a process and the core it
runs on both have active profiling scopes) and in their profiled
event types. If these scopes are unaware of each other, the
direct result is that, due to the limited availability of HPCs,
events assigned earlier are scheduled, while subsequent as-
signments are rejected, leading to unfair HPC sharing.
Inflexibility Leads to Misattribution. Without flexible abstrac-
tions for defining profiling scopes, users risk mismatches
among them; this may lead to misattribution of unrelated
event counts. For example, the survey study in [19] examines
various applications that aim to characterize program work-
loads. These often profile the entire task, starting immediately
after the process is created, which incidentally captures events
from process initialization that are unrelated to the actual pro-
filing scope of interest. To profile events across multiple tasks,
dCat [72] pins target tasks to specific cores and then profiles
these cores. This approach inevitably includes event counts
from context switches on these cores and may also capture
events from other tasks running on the same cores.
Misattribution Example. We use Dmon [35] as an illustra-
tive example of the necessity of flexible profiling scopes.
DMon [35] is a performance diagnostic tool that detects
software data locality issues using memory- and cache-
based event profiling. It employs Intel’s Top-Down method-
ology [73] to categorize events into a four-layer hierarchy,
monitoring events at subsequent layers based on profiling
results from the current layer. As shown in Figure 5, DMon
starts by profiling the derived Back-end Bound metric (reveal-
ing how often micro-ops are not delivered due to back-end
resource shortages) for 100ms. If the program is identified
to be back-end bound, DMon then profiles the metrics in the
next layer (e.g., execution and memory stall load).

Problematic code segments with data locality issues are
often loops that repeatedly perform data operations, e.g., re-
cursive pointer chasing [35]. To identify these operations,
DMon must attribute events to the corresponding regions of
code. However, DMon modifies events on the fly as it moves

through the top-down hierarchy, during which time the target
program’s execution may move away from the problematic
code segments; events from subsequent layers of the hierarchy
might therefore be attributed to other segments, with prob-
lematic ones remaining undetected. [35] suggests mitigating
this by switching to the next layer more swiftly. However,
this requires manual tuning of the time window, which varies
across different workloads and platforms.
Examination of Mismatched Scope Errors. We extend our
preliminary study to quantify the effects of misattribution
due to mismatched profiling scopes. We again profile the
541.leela_r benchmark, pinning the workload to a single core
and using Linux Perf to count all occurrences of LLC-load-
misses in four different profiling scopes: (i) on that core,
(ii) by the process, (iii) between explicit polling points in-
strumented at the beginning and end of program execution,
and (iv) using time-triggered sampling. Results are measured
across 10 runs and plotted in Figure 4. The instrumented
scope produces the most stable results, acting as calipers to
filter just those events related to the program.

4 Tintin Design Overview

Tintin is a hardware event monitoring infrastructure that aims
to solve these limitations, harnessing the following insights.

4.1 Key Insights

I1. Multiplexing errors can be characterized at runtime
and reported to applications.
While multiplexing errors cannot be entirely eliminated, the
profiling infrastructure can quantify the expected magnitude
of these errors based on observed variance in event rates.
These can be reported back to user-space applications along-
side the measured counts. These errors serve as indicators of
confidence in the measurements and can inform the applica-
tion’s decision-making accordingly.
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I2. Events exhibit dynamic and distinct errors at runtime,
presenting opportunities for scheduling.
By allocating more HPC time to events with larger variance,
the overall error can be mitigated. Figure 6 plots counts of the
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Figure 7: Tintin design overview.

bus-cycles and L1-dcache-load-misses events when profiling
the 541.leela_r benchmark for 1 second. This illustrates that
variance may depend on the specific execution phase. In this
period, L1-dcache-load-misses fluctuates significantly, while
bus-cycles remains stable. Allocating more HPC time to the
former could reduce measurement errors.

It is worth noting that Tintin does not require offline anal-
ysis to characterize execution phases of the target workload.
Instead, it detects sharp changes online, which is made pos-
sible because these typically persist for at least tens of mil-
liseconds [59], as shown by the gray area in Figure 6. Sharp
changes at the millisecond level tend to be imperceptible to
system performance [25, 45, 54, 72]. Nonetheless, Tintin sup-
ports programmable intervals of 1ms or less with negligible
overhead, allowing it to capture even these transient effects.

I3. A level of indirection can provide a uniform mechanism
to handle the heterogeneity of profiling requirements.

“We can solve any problem by introducing an extra level
of indirection.” – often attributed to Butler Lampson, who
attributes it to David Wheeler.

The two issues related to profiling scope – inflexibility in def-
inition and conflicts due to overlap – both point to the same
solution: a new layer to standardize and manage heteroge-
neous profiling requirements. With such a layer in the kernel,
the system can provide a rich programming API to define
diverse profiling scopes without adding management com-
plexity. The heterogeneous requirements are translated into a
uniform abstraction within the indirection layer. This allows
for collaborative management of all profiling requirements
across the system, resolving scope conflicts.

4.2 Tintin Structure

Figure 7 depicts the structure of Tintin, which consists of
three internal modular components.
Tintin-Monitor (§5) measures HPC data and characterizes
errors simultaneously at runtime. It tracks event counts and un-

monitored time, and based on this data, employs a lightweight
calculation method to estimate errors caused by multiplexing.
These error estimates are maintained alongside the HPC data
and reported to user-space applications upon request.

Tintin-Scheduler (§6) uses the errors reported by Tintin-
Monitor to schedule events on HPCs, assigning each event a
unique share of time with the objective of minimizing overall
error. This problem is shown to be semantically equivalent
to elastic scheduling in real-time scheduling theory [12, 13].
We present a quasilinear algorithm to solve this optimally for
events on multiple HPCs, maintaining low overheads.

Tintin-Manager (§7) provides another level of indirection in
the kernel. It proposes a new first-class OS abstraction object
– the ePX– translating heterogeneous profiling requirements
from user space into a uniform representation. It then manages
these ePXs collectively for all applications, avoiding ineffi-
ciency caused by conflicting profiling scopes. Additionally,
most of Tintin-Manager’s APIs have counterparts in existing
profiling tools, ensuring minimal effort to migrate existing
applications to use Tintin.
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Tintin-Monitor interpolates multiplexed event counts and
aims to characterize the resulting estimate errors. These errors
are then used for event scheduling and are reported to user
space to inform the measurement confidence.

Modeling Runtime Uncertainty. A challenge in calculat-
ing runtime errors in estimated event counts is the lack of
ground truth measurements during runtime. To address this,
Tintin-Monitor leverages measurement variance as a proxy
for error. The underlying idea is that existing interpolation
mechanisms [47] implicitly assume linear changes in event
rates [22] between subsequent counts. Figure 8 shows an
example of interpolation, where the rectangles represent the
time slices during which events are measured. If the rate of
change in interstitial time slices remains strictly linear, there
would be no errors in the reported counts. Prior work [22]
therefore links interpolation uncertainty to non-linearity in
the unmeasured quantities.
Interpolation. Formally, an event 𝑒𝑖 ∼ (𝑥𝑖 ,𝜎𝑖) has an esti-
mated count 𝑥𝑖 and expected uncertainty 𝜎𝑖 due to interpola-



tion over multiplexed observations. As shown in Figure 8, the
event 𝑒𝑖 is measured with count 𝑥 𝑗

𝑖
over some continuous time
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𝑖
. To interpolate over unmonitored

intervals, Tintin-Monitor uses a custom implementation of
the trapezoid area method (TAM), which was shown to be
the most accurate methodology for online interpolation of
event counts [47]. Tintin-Monitor assumes a linear rate of
change in the event rate, constructing a trapezoid so that its
top passes through the midpoint ((𝑏 𝑗+1

𝑖
+ 𝑎 𝑗+1

𝑖
)/2, 𝑟 𝑗+1

𝑖
) of the

second measured interval.
Uncertainty. For an event 𝑒𝑖 with interpolated count 𝑥𝑖 , Tintin-
Monitor defines uncertainty as the expected error 𝜎𝑖 in the
count. The instantaneous rate of event arrival is a random vari-
able r𝑖 , with a mean rate 𝑟 𝑗

𝑖
obtained during each measurement

interval 𝐼 𝑗
𝑖
. Since instantaneous rates cannot be measured at

every instant, Tintin-Monitor instead characterizes expected
variance 𝑉(r𝑖) by taking the variance of the sample means,
weighted by duration. In many stochastic processes, variance
scales linearly with time [26]; since we are measuring vari-
ance in rate, it therefore follows that the expected variance
𝑉(𝑥𝑖 , 𝑡) in event count 𝑥𝑖 over the time 𝑡 that the event is not
monitored can be expressed as 𝑉(𝑥𝑖 , 𝑡) =𝑉(r𝑖) · 𝑡2. Using
variance as a proxy for uncertainty, the expected error 𝜎𝑖 in
the estimated event count is

√
𝑉(𝑥𝑖 , 𝑡).

Efficient Incremental Update of Uncertainty. Tintin-Monitor
needs to update variance at each monitoring interval. The
standard computation of variance requires revisiting all past
data points, which is time- and space-consuming. Tintin-
Monitor instead implements a weighted version of Welford’s
method [69] for incremental variance updates. At the end
of monitoring intervals 𝐼

𝑗

𝑖
(𝑗>1), variance is updated as

𝑉𝑖←𝑉𝑖−1 · (𝑟𝑖−𝜇𝑖) · (𝑟−𝜇𝑖−1), where 𝜇 is the time-weighted
mean over collected counts.

Uncertainty Usage Models. To the best of our knowledge,
Tintin is the first hardware event profiling system to re-
port measurement uncertainty to user space. By serving as
an indicator of measurement confidence, uncertainty can
be explicitly incorporated into application decision-making.
While the use case depends on the specific application, our
investigation shows that profiling-informed decision mak-
ing generally follows two broad patterns: rule-based pro-
cesses [8, 15, 25, 27, 35, 72], which rely on procedural logic
derived from human domain expertise; and model-based deci-
sion making [20, 37, 54] based on data-driven learning.

For rule-based approaches, conditional logic may be predi-
cated on observed HPC data, e.g., an event count must exceed
a certain threshold for an action to be taken. In this context,
uncertainty can be incorporated to ensure actions are taken
only when the observed data reflect with sufficient confidence
that the target condition has been met (i.e., uncertainty is
sufficiently low), thereby increasing the reliability of the de-

cision. For example, Caladan [25], a global task scheduler
for multicore and multiprocessor systems, attributes memory
bandwidth usage to scheduled tasks based on LLC misses and
revokes a core from the task with the highest count. However,
uncertainty in the profiling data can lead to false identification
of high bandwidth usage. By incorporating an uncertainty
threshold as an additional condition, the system can avoid
mistakenly penalizing tasks.

Model-based approaches can incorporate reported uncer-
tainty values directly into the model as additional input dimen-
sions, allowing the system to account for the confidence of
each measurement during prediction. For instance, in our case
studies (§8.1), we included error estimates as input features to
the predictive models used by Pond to improve the accuracy
and robustness of resource orchestration.

Implementation. Tintin-Monitor is activated using the Linux
kernel’s hrtimer. It leverages the existing hardware interfaces
in perf_event for reading and configuring PMUs across ar-
chitectures, intercepting functions to read raw HPC data to
perform TAM-based interpolation and incorporate uncertainty
characterization. Variance is initialized by a warm-up period
where events are scheduled in a round robin fashion, then
updated with each HPC read using Welford’s method. To
avoid involving floating-point operations in the involved divi-
sion steps, we apply a scaling factor, where necessary, to the
numerator then perform integer division to achieve a fixed-
precision result. To prevent overflow, we use 64-bit integers
and hand-tune the order of operations to avoid large values.

6 Tintin-Scheduler

Tintin-Scheduler draws from a branch of real-time systems
theory that addresses scheduling tasks on limited resources.
More specifically, elastic scheduling theory [12,13] adapts the
allocation of processor resources to tasks on overloaded sys-
tems to optimize some objective (e.g., result quality). Tintin-
Scheduler’s goal is similar: it aims to adjust allocations of
time for events on limited monitoring resources (HPCs) to
minimize overall uncertainty. In this section, we formulate
the event scheduling problem and translate it into a form that
is semantically equivalent to elastic scheduling.

Scheduling Model. Formally, for a profiling scope, we define
E = {𝑒𝑖}, the set of events to be monitored, where |E| = 𝑛.
Similarly, C = {𝑐 𝑗} denotes the set of HPCs available to mon-
itor them, where |C| = 𝑚. The problem is to determine a
schedule 𝒮(𝑡) : C→{E,𝜙} that defines, at each time 𝑡, the
event assigned to each counter. We define an event’s utiliza-
tion𝑈𝑖 as the fraction of time it occupies a counter. A function
ℒ𝑖(𝑈𝑖) characterizes the loss associated with multiplexing
event 𝑒𝑖 . ℒ𝑖(1) is assumed to be 0 (if the event is always
counted, there is no multiplexing error), and the function is
assumed to be monotonically non-increasing.

Scheduling Policy. From §5, the expected error 𝜎𝑖 in the
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Figure 9: Tintin-Scheduler workflow.

estimated count of event 𝑒𝑖 is
√
𝑉(r𝑖) · 𝑡, where 𝑡 is the

amount of unmonitored time. Future unmonitored time for
event 𝑒𝑖 is thus proportional to 1−𝑈𝑖 , where 𝑈𝑖 is its utiliza-
tion; thus, we express the expected error, normalized to the

count, as 𝜎𝑖 =
(√

𝑉(r𝑘)/𝑥
)
· (1−𝑈𝑖). To minimize the sum

of squared errors, the loss function ℒ𝑖(𝑈𝑖) is formulated as
𝜎2
𝑖
=
(
𝑉(r𝑖)/𝑥2

𝑖

)
· (1−𝑈𝑖)2. The scheduling problem is there-

fore stated as the following constrained optimization problem:

min
𝑈𝑖

𝑛∑
𝑖=1

𝑤𝑖𝑉(r𝑖)
𝑥2
𝑖

· (1−𝑈𝑖)2 (1a)

s.t.
𝑛∑
𝑖=1

𝑈𝑖 ≤ 𝑚 and ∀𝑖 , 𝑈min ≤𝑈𝑖 ≤ 1 (1b)

where 𝑤𝑖 is a weight assigned to event 𝑒𝑖 , denoting its relative
importance. By default, 𝑤𝑖 is set to 1, but users can adjust it
manually to specify the importance of events.
Online Solver. The above optimization problem is the same
quadratic program as that presented in [14] to represent real-
time elastic scheduling [12, 13]. The existing solver is tai-
lored for single-core scenarios, whereas the problem under
consideration involves multiple HPCs, which is conceptually
equivalent to a multi-core scenario. Tintin-Scheduler adapts
the solver by concatenating multiple HPC resources into a
single virtual resource and scheduling events sequentially.
This prevents any event from being scheduled concurrently
on multiple counters, which would yield identical counts and
not reflect the effective utilization assignment.

Formally, the "hyperperiod" of the schedule, denoted as
𝐻, represents the time after which the schedule repeats. For
simplicity, it is normalized to 𝐻 = 1. Events and counters are
considered in order: event 𝑒1 is assigned the interval [0,𝑈1]
on counter 𝑐1. Events are placed sequentially on a counter un-
til the total utilization on that counter would exceed 1, where-
upon a portion of the event’s utilization is assigned to the end
of the hyperperiod interval on the current counter, and the
remaining utilization is placed at the beginning of the interval
on the next open counter. Since 𝑈𝑖 ≤ 1, these intervals do not
overlap in time. The schedule construction is illustrated in
Figure 9, with the detailed procedure and an optimality sketch
provided in Appendix A.

Event Groups. The Linux perf_event subsystem supports user-
specified event groups, ensuring that even as events are multi-
plexed, those in the same group are always scheduled simul-
taneously. This is useful for identifying correlations among
related events. Tintin-Scheduler extends this functionality,
treating the group as a single schedulable entity. The total
time allocated among all events in a group by the elastic
scheduling policy is split evenly between them so all events
are allocated to the same time slices across different counters.

Efficiency and Robustness Optimization. The solver retains
the same runtime complexity as the original in [12], which
is quadratic – 𝑂(𝑛2) – in the number of events 𝑛. This is
not negligible given the high scheduling frequency. Briefly,
the solver iterates through all events to calculate their uti-
lization. If any event produces a negative utilization, it must
be set to zero, indicating that the event will not be sched-
uled. This requires backtracking and re-iterating through
all the events. Consequently, the worst-case complexity is
𝑂(𝑛 × (𝑛 − 1)). With the insight that only low-uncertainty
events produce negative utilization, the solver can prioritize
high-uncertainty events, avoiding re-iterations. Leveraging
this invariant, the solver first sorts all events by their uncer-
tainty and then calculates utilization in a single pass. The
overall complexity is quasilinear, only dominated by the sort-
ing step, 𝑂(𝑛 log𝑛)+𝑂(𝑛) = 𝑂(𝑛 log𝑛).

Furthermore, the calculated utilization could be extremely
low in some cases. Besides the performance impact caused by
closely triggered timer interrupts, such low utilization results
in unstable estimations, as measured errors may be ampli-
fied when scaled to the full range. As such, Tintin-Scheduler
imposes a lower bound𝑈min on the scheduling quantum (min-
imum schedulable utilization time slice), which is set to one-
tenth of the hyperperiod in our implementation.

Event Starvation. A potential issue is that events with low
uncertainty might not be scheduled, resulting in a persistently
low uncertainty value. However, the uncertainty metric ad-
dresses this by increasing an event’s uncertainty as the interval
since its last scheduling grows, thereby ensuring that all events
are eventually allocated on the HPC.

Implementation. Tintin-Scheduler is activated when Tintin-
Monitor detects the end of a hyperperiod 𝐻, which is set by
default to the CPU task scheduling interval. In addition to elas-
tic scheduling, Tintin-Scheduler can be configured for simple
round-robin multiplexing. A simpler priority-driven schedul-
ing policy, Uncertainty-First, does not compute utilization,
but instead prioritizes the events with the highest uncertainty
at each hyperperiod. We note that support for PMU architec-
tures that restrict some events from being assigned to certain
HPCs is still limited, as existing algorithms to solve the re-
stricted assignment problem with elastic scheduling are too
complex for an efficient in-kernel implementation.



7 Tintin-Manager

Internally, Tintin-Manager is composed of two parts: a com-
ponent for managing profiling scopes and HPC data, and an
interface for handling user requests.

Monitor
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Figure 10: Tintin-Manager workflow. 1a An ePX is created for
a task, 1b associated to code segments, or bound to a broader
scope such as 1c core-wide or VM-wide profiling. 2 Upon switch-
ing ePXs, Tintin-Manager updates outgoing event statistics and 3
fetches events for any incoming ePXs. It then 4 invokes Tintin-
Scheduler to assign event priorities and time shares. It also 5 up-
dates the HPC data if any events need to be scheduled out. Finally,
6 it places new events on the HPCs.

Event Profiling Context. To abstract heterogeneous profil-
ing requirements, Tintin elevates profiling scope via a new
first-class kernel object, the Event Profiling Context (ePX) ab-
straction. The ePX encapsulates the monitoring of all events
associated with a given profiling scope, ePX ∼ {𝑒𝑖 , .., 𝑒 𝑗}. An
ePX can be defined from the perspective of execution in-
stances (e.g., a thread, a process, or all threads on a single
core) and from the perspective of code segments (e.g., a func-
tion). Multiple contexts, ePX𝑚 and ePX𝑛 , may share common
events 𝑒𝑘 , but the HPC data (including counts and uncertainty)
are maintained separately, with 𝑒𝑚

𝑘
→ ePX𝑚 and 𝑒𝑛

𝑘
→ ePX𝑛 .

Contexts have been successfully used as first-class objects
in prior work [40, 42, 51, 61], primarily for flexible privilege
separation [17, 40, 51, 61] and time management [42]. Here,
the ePX concept enriches hardware event profiling as follows.

Unified Management of ePXs. Figure 10 depicts the work-
flow and unified management approach of Tintin-Manager.
Flexible Definition of Profiling Scopes. Tintin-Manager trans-
lates the heterogeneous profiling requests from program seg-
ments and execution instances into a unified ePX format. Ad-
ditionally, it supports ePX binding, enabling explicit scoping
to arbitrary profiling scopes, such as multiple code segments
or threads. The bound ePXs form a new ePX. This allows
ePXs to be managed uniformly and collectively.
Correct Attribution of Event Counts. Tintin-Manager places

calipers at an ePX’s entry and exit points to filter unrelated
event counts, activating counting upon entry and deactivat-
ing it upon exit. To remain aware of ePX switches, Tintin-
Manager listens for two types of signals. For ePXs associated
with code regions, it utilizes instrumentation to insert specific
syscalls at relevant code locations, triggering ePX switches.3

For ePXs associated with execution instances, Tintin-Manager
listens for CPU scheduling events to detect ePX switches.
Scope Conflict Resolution. To support overlapping profiling
scopes, Tintin-Manager supports the simultaneous activation
of multiple ePXs. Specifically, when more than one ePX is
active, it groups all events and schedules them collectively,
avoiding contention from overlapping events. An ePX may
be assigned a weight, e.g., to avoid unfairness in resource
allocation when it profiles numerous types of events. Tintin-
Scheduler applies these weights as multipliers to the individ-
ual event weights within the ePX. Counts, variance, and un-
certainty for each event are still maintained separately within
each individual ePX. When an HPC is read, Tintin-Monitor
attributes the count to all active ePXs monitoring that event,
but their interpolated counts and uncertainty are updated indi-
vidually. Upon ePX exit, Tintin-Manager removes the relevant
events and reschedules.
On-the-fly Event Reconfiguration. Since ePXs are elevated
to first-class objects, they can be shared and used by other
components to reconfigure the events of interest dynamically
within a profiling scope. This capability is crucial for applica-
tions that require adaptive profiling [35].

Programming API and Generality. In general, existing ap-
plications using perf_events may use Tintin instead without
modification.
The perf_event Usage Model. Section §2.1 describes the
Linux perf_event subsystem. In general, applications use it
either via explicit instrumentation of syscalls, or by launching
processes with the Perf command-line utility. In keeping with
the Linux philosophy that “everything is a file,” the driving
syscall is perf_event_open, which takes several arguments
indicating the profiling settings, and returns a file descriptor
from which, among other data, HPC counts can be read.
Using Tintin Instead. A Linux kernel patched with Tintin
switches between Tintin and the classical perf_event via an
interface in procfs. When Tintin is selected, Tintin-Monitor
and Tintin-Scheduler become active, but both the syscall API
and Perf remain the same, allowing compatibility with exist-
ing applications. To access extended functionality, e.g., ePX
creation and reported uncertainty values, Tintin-Manager pro-
vides the extended API outlined in Table 1. An ePX can be
created for a given scope with a call to tintin_create_context.
The API allows any ePX to be disabled on demand using
tintin_disable_context and allows on-the-fly event modifica-

3A less intrusive alternative [62] is to leverage CPU debugging registers
to insert interrupts at specific binary addresses without modifying the target
executable; extending this functionality is left for future work.



tion with tintin_add/remove_event. Since an ePX identifier
can be referenced globally, it can also be used to associate dif-
ferent ePXs using tintin_associate_contexts across different
threads or processes, merging their events.

Table 1: Tintin-Manager API Functions

System calls Descriptions

tintin_create_context(s) Create an ePX at the specified scope s
tintin_enable_context(c) Begin monitoring of the given ePX c
tintin_disable_context(c) End monitoring of the given ePX c
tintin_add_event(e, c) Begin monitoring event e in given ePX c
tintin_remove_event(e, c) Stop monitoring event e in given ePX c
tintin_set_event_weight(e, w) Set or modify event e scheduling weight w
tintin_associate_contexts(c1, c2) Aggregate the counts of two ePXs
tintin_read_with_uncertainty(e) Read both event count and uncertainty

Implementation. All APIs are implemented as system calls,
wrapped in C. To reduce the effort required for instrumenta-
tion, we implemented a set of LLVM [36] compiler passes
that automatically instrument the system calls during compi-
lation. By utilizing different levels of passes (e.g., function-
level, basic block-level), users can achieve various levels of
granularity by adding a compilation flag. The current Tintin
implementation defines profiling scopes in source code, but
binary instrumentation [62] could extend this to binaries.

8 Evaluation

This section seeks to answer the following questions:

• How can Tintin be used in real-world applications?
(§8.1)

• How effective is Tintin in improving event measurement
accuracy? (§8.2)

• What is Tintin’s overhead? (§8.3)

• How scalable is Tintin? (§8.4)

Experimental Setup. All experiments were conducted on a
server with two Intel Xeon Gold 6130 (Skylake) CPUs and
32GB of RAM. Each CPU has 16 physical cores running
at 2.10GHz with Hyper-Threading disabled. By default, the
hyperperiod (scheduling cycle) in Tintin-Scheduler is set to 4
ms (250 Hz), aligning with the default scheduling interval of
the Linux perf_event subsystem [65] on the tested machine.
The scheduling quantum is set to 1/10 the hyperperiod (0.4
ms). As part of our scalability analysis in §8.4, we explore
the effects of these parameters with different values.

Ground Truth. Due to the non-determinism of modern CPUs,
obtaining ground truth data outside of simulation is nearly im-
possible. Similarly to CounterMiner [41] and BayesPerf [2],
we measure ground truth by pinning an event to an HPC, then
reading its value on completion of a benchmark.

8.1 Case Studies

We use three case studies to demonstrate the effectiveness
and usability of Tintin.

8.1.1 Dynamic Resource Provisioning with Pond

Target Application. Pond [37] is a resource orchestration
subsystem developed by the Microsoft Azure team. In cloud
environments, memory pooling may improve DRAM utiliza-
tion and reduce cost, but using pooled instead of local mem-
ory might substantially increase the latency of some virtual
machine workloads. To allocate the limited local memory ap-
propriately, Pond predicts whether a VM workload’s latency
will be sensitive to the use of pooled memory.

Evaluation Methodology. Pond is a proprietary, closed-
source system, so its authors do not provide the data or models
used in [37]. Instead, we use Pond’s open-source emulation
layer [66] to reproduce its latency insensitive model [37, Fig-
ure 12] according to the paper’s description. The predictive
model is a random forest regressor implemented using Scikit-
learn [52]. The model’s inputs consist of 20 hardware events,
sampled at 100 ms intervals via Intel’s EMON tool [33]. To
generate the training data, Pond runs the workload entirely on
a local NUMA node, then again with memory from a remote
node, reporting the execution time increase. We follow the ex-
perimental setup in [37], generating data using 12 workloads
from SPEC CPU®2017 [11] and 30 from the GAP Bench-
mark Suite [3]. We randomly select 30 workloads for training
and 12 for testing.
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Figure 11: Results on Pond [37]. Each bar represents the score of
the latency sensitivity prediction.



Results. A comparison of model prediction accuracy is shown
in Figure 11; values closer to 1 indicate better performance.

Profiling Scopes. As Intel EMON only supports CPU-level
event profiling, Pond’s emulation layer pins VM threads to
specified cores, then attributes all event counts from those
cores to the VM. We modify Pond to instead use Tintin to
associate an ePX with all VM threads. In the plot on the left,
Tintin outperforms the baseline, measured by EMON [33], in
95 out of 100 experiments. On average, Pond’s accuracy with
Tintin is 0.51 higher than the baseline. This improvement is
primarily due to Tintin’s ability to attribute events directly via
correctly defined profiling scopes.

Elastic Scheduling. To demonstrate the advantages of Tintin-
Scheduler’s elastic scheduling approach in reducing total un-
certainty, we compare it to a round-robin scheduling strategy
across another 100 experiment sets. The results are shown
in the middle plot of Figure 11. Elastic scheduling outper-
formed the round-robin strategy in 64 out of 100 experiments,
improving model prediction scores by an average of 0.15.

With Uncertainty. To demonstrate how user-space applica-
tions might use the uncertainty reported by Tintin, we modify
our implementation of Pond’s latency prediction model to
include the uncertainty values reported by Tintin-Monitor as
inputs. Results are illustrated in the right plot in Figure 11.
With this additional information, scores are higher in 55 out
of 100 cases compared to the model without uncertainty, and
the average score increases by more than 0.02. The minor im-
provement is attributed to the fact that, in these tests, Tintin’s
targeted scope and scheduling policy succeed in minimiz-
ing uncertainty, so the small error values given to the model
provide only incremental improvements.

Resolving Scope Conflicts. To evaluate Tintin’s ability to re-
solve profiling scope conflicts, we modify the workloads man-
aged by Pond to also require their own event monitoring,
leading to potential conflicts with Pond’s profiling scope. We
instrument each workload to profile 16 events and then mea-
sure both the counting accuracy of the target workload and the
prediction accuracy of Pond’s latency model. The counting
accuracy is measured by pinning a specific event (e.g., cache
misses) to a dedicated hardware counter, which serves as the
ground truth for comparison.

By default, Pond profiles events at the CPU core scope,
and the Linux perf_event subsystem prioritizes these events
over any other event bound to tasks. As a result, if other
workloads attempt to profile events on the same core, their
events may never be scheduled, leading to starvation. Tintin
avoids this issue by collectively scheduling all events. Under
this collective scheduling approach, measurement accuracy
does not degrade significantly compared to separate runs that
just profile each scope in isolation. From the workloads’ per-
spective, the counting error increases slightly from 3.11%
to 3.56%. From Pond’s perspective, the prediction accuracy
remains comparable, with an average score decrease of only

Cores Metrics % Slots     
C0    FE          Frontend_Bound            39.0 <==  
C0    BE          Backend_Bound                          33.3  
C0    RET         Retiring                               19.5  
C0    FE          Frontend_Bound.Fetch_Latency           28.7  
C0    BE/Mem      Backend_Bound.Memory_Bound             23.8   
C0    RET         Retiring.Heavy_Operations              12.5  

(a) Results by Linux perf_event subsystem.

-     Metrics % Slots     
S1    BE          Backend_Bound            96.8 <==  
S1    BE          Backend_Bound.Memory_Bound             90.9  
S1    FE          Fetch_Latency.MS_Switches  % Clocks_est 9.8  
S1    BE/Mem      Backend_Bound.Memory_Bound             80.5 <== 

(b) Results by Tintin.

Figure 12: Results on DMon.

0.01 across 100 test cases. Moreover, the overhead of Tintin
remains below 2.4% in both conflicting and non-conflicting
scenarios, demonstrating that resolving conflicting scopes
does not introduce significant overhead.

8.1.2 Data Locality Problem Detection with DMon

A description of the target application, DMon [35], and its
limitations has already been introduced in §3.

Evaluation Methodology. We use DMon’s artifact [24] as
a baseline for comparison and target the workload from its
repository, which contains one data locality issue. Rather than
using DMon’s built-in time window, Tintin binds ePXs at the
individual loop level via syscalls automatically instrumented
at the beginning and end of each function in a compiler pass.
This enables profiling different layers in Intel’s Top-Down
event hierarchy [73] every time a function is entered, elim-
inating the need to switch layers during function or loop
execution. Since some functions may be invoked only once in
a given run, a user may execute the target workload multiple
times to ensure each layer is adequately profiled. By provid-
ing more targeted profiling scopes via its ePXs, Tintin ensures
that events are correctly filtered for each function so as to
correctly attribute the locality issue. In our case study, results
are evaluated based on the accuracy with which they identify
the code region experiencing Back-end Bound behavior.

Results. Visualization of DMon’s output is shown in Fig-
ure 12. Among 10 experiment runs, DMon often results in
an ambiguous mixture of Front-end and Back-end Bound in-
stances, failing to identify data locality issues when using
Linux perf_event. In Figure 12(a), the results indicate that
most of the time is spent on the frontend. However, the pro-
gram is actually Back-end Bound. Since DMon aggregates
the counts over the program’s execution, the events originat-
ing from Back-end Bound code segments are overshadowed
by other normal code. In contrast, Tintin offers more precise
profiling via loop-level scope. Notably, in Figure 12(b), the
target function is identified as spending 96.8% of its time on
the backend, directly indicating a data locality issue. Among
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10 repeated experiment runs, DMon failed in 9 out of 10 runs
with perf_event. However, with Tintin, DMon reliably detects
Back-end Bound issues; the reported backend time for the
target consistently exceeds 91.1%.

8.1.3 Intrusion Detection System

HPC data has also been used for security purposes in the last
two decades. Previous works [20, 34] leverage the measured
HPC values to classify an unknown program as either be-
nign or malicious. This case study investigates whether Tintin
enhances the efficacy of intrusion detection.

Evaluation Methodology. We adopt the experimental setup
from the seminal work of Demme et al. on detecting Linux
rootkits with hardware event data [20]. As our malware, we
use the open-source Linux rootkit Diamorphine [43], which
is implemented as a loadable kernel module. To activate the
rootkit’s functionality, we execute common Linux commands,
including ps, ls, whoami, printenv, and pwd, while monitoring
their behavior. The rootkit is configured to hide processes, es-
calate user privileges to root, and conceal files. Since Demme
et al. do not specify the hardware events used in their exper-
iments, we select the 10 commonly used events predefined
under PERF_TYPE_HARDWARE as described in [44].

We conducted three sets of experiments. The first set eval-
uates perf_event at the granularity of the target victim tasks.
The second set evaluates Tintin’s elastic scheduling. In this
setup, we replaced the event scheduling logic with Tintin’s
scheduler but kept the rest unchanged. The third set extends
the previous configuration by collecting uncertainty informa-
tion at each measurement point. For each set, we collect 800
samples for training and 200 samples for testing; these are
evenly split between execution scenarios with and without the
rootkit. For the detection model, we adopt a random forest
classifier, which is also used in [20, 77].

Results. We observed that using HPC data to detect malware
within a single, fixed target task (e.g., ls) yields excellent clas-

sification results. However, this approach requires construct-
ing a separate HPC-based malware signature for each individ-
ual task, which is impractical and limits generalizability. In
our more realistic experimental setting, where the five target
tasks vary, the detection performance is less compelling. Fig-
ure 13 presents the ROC curves for Linux perf_event, Tintin
without uncertainty information, and Tintin with uncertainty
information. The AUC (Area Under the Curve) for perf_event
is 0.57. Tintin improves the AUC to 0.66 through its event
multiplexing-aware scheduling. When uncertainty informa-
tion is incorporated, the AUC further increases slightly to 0.70.
Although the improvement is modest, these results indicate
that Tintin provides benefits in this scenario.
Further Discussion. There are inherent limitations of relying
solely on HPC data for intrusion detection because malicious
software behavior may not always manifest in the specific mi-
croarchitectural events captured by HPCs [77]. Although our
experiments showcase that Tintin raises the bar for attackers,
sophisticated attacks can still evade detection.

8.2 Effectiveness of Tintin

For a more comprehensive evaluation, we use the SPEC
CPU®2017 [11] and PARSEC 3.0 [9] benchmark suites
to assess the accuracy of the event counts collected online
by Tintin, comparing it to Linux perf_event and Counter-
Miner [41]. While CounterMiner is primarily intended for
offline predictive modeling and analysis of events, it does
attempt to reduce event count errors by smoothing outliers.
For a reasonable runtime comparison, we implement its data
cleaning phase in Linux perf_event. Another related infras-
tructure, BayesPerf, is not included in the comparison because
it requires algebraic relations between events, which are ab-
sent from most event primitives in practice.

To evaluate the effectiveness of elastic scheduling, we com-
pare it to Tintin-Scheduler’s "Uncertainty-First" policy. In
this configuration, events with higher uncertainties are prior-
itized, and the scheduled event occupies the HPC until the
next hyperperiod. We select the 24 default predefined events
in Linux perf_event to profile simultaneously [44]. To obtain
ground truth, we pin one event to an HPC in each run. We
repeat the experiments for the first 5 pre-defined events in
PERF_TYPE_HARDWARE in [44]. The average errors are
reported in Figure 14.

Event counts obtained with Linux perf_event were, on av-
erage, 9.01% off from the ground truth, with a maximum
error of 53.27%. CounterMiner performed similarly with an
average error of 8.80% and a maximum of 56.21%. In com-
parison, Tintin’s errors remained well under 5% in most cases.
Furthermore, while "Uncertainty-First" also reduces errors,
it does not perform as well as elastic scheduling, achieving
an average error of 6.51%, compared to 2.91%. This is due
to two factors: first, its scheduling is heuristic rather than op-
timal; second, it cannot allocate finer-grained timeslices for
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Figure 14: Measurement errors.

events, causing each event to occupy the HPC for an entire
hyperperiod, which may lead to event starvation.

8.3 Runtime Overhead of Tintin

We also evaluate the runtime overhead of Tintin in compari-
son to Linux perf_event and BayesPerf [2]. We exclude Coun-
terMiner [41] from these experiments, as it is a purely of-
fline analysis tool. We instrument a CPU implementation of
BayesPerf by modifying the Linux perf_event timer callback
to run BayesPerf’s Expectation Propagation algorithm [2, Alg.
1]. Figure 15 presents execution time means and standard
deviations across 10 runs of each considered benchmark (nor-
malized to the execution time without profiling). Without
the dedicated hardware accelerator in [2], BayesPerf incurs
excessive overhead, with up to 31.3% slowdown in the pro-
filed benchmarks. This limits portability, as it cannot achieve
acceptable runtime performance on standard hardware.

On the other hand, Tintin exhibits an average overhead of
only 2.4%, only slightly higher than perf_event’s 1.9%. This
difference was found to be statistically insignificant. In the
worst-case scenarios, we observed Tintin’s overhead to reach
up to 7.6% while perf_event’s could be up to 12.7%. In some
scenarios, Tintin achieves even better execution time perfor-
mance than Linux perf_event due to its elastic scheduling
method, which can trigger fewer interrupts.

8.4 Scalability Analysis

There are three factors impacting the accuracy and overhead
of Tintin: scheduling hyperperiod, scheduling quantum, and
number of monitored events. In this section, we examine how
Tintin’s performance scales with these factors. While the
number of scopes might also impact scalability, these effects
are reflected by the number of events.
Hyperperiod. We target the 505.mcf workload from the
SPEC 2017 benchmark, varying the hyperperiod from 15
ms to 1 ms. The resulting changes in accuracy and overhead
are recorded in Figure 16. We observe in Figure 16(a) that the
accuracy improves with finer-grained hyperperiods, achiev-
ing an error rate of only 0.2% at 1 ms. In contrast, the error

rate increases to 1.01% at a 15 ms hyperperiod. Meanwhile,
perf_event exhibits significantly higher error rates across all
hyperperiod settings, reaching up to 7.8% at 15 ms. Nonethe-
less, Figure 16(b) shows that while overhead increases with
smaller intervals, it remains below 5%.

Scheduling Quantum. Since Linux perf_event schedules
events at the hyperperiod, it does not support tuning the
scheduling quantum. Consequently, we exclude experiments
involving it. The accuracy and overhead results are presented
in Figure 17(a). Accuracy stabilizes at 0.5 ms, with an error
rate of 0.6%. Reducing the scheduling quantum further does
not significantly enhance accuracy but noticeably increases
overhead. For instance, at a quantum of 0.05 ms, the overhead
surpasses 7.5%.

Number of Events. We evaluate the scalability of elastic
scheduling in handling varying numbers of events, as shown
in Figure 17(b). The error remains below 5.4% with 512
event types, but when the number reaches 1024, Tintin can
render the kernel unresponsive. This issue occurs when Tintin-
Scheduler is triggered during a CPU context switch. To gen-
erate a new schedule, it sorts all events by uncertainty, which
takes too long with 1024 events. As a result, it may not finish
before the next jiffy, causing the CPU scheduler to miss the
deadline and be deemed unresponsive. In practice, the number
of profiled events is usually less than 256, so Tintin remains
usable. In contrast, the errors in perf_event increase more
significantly with the number of events, exceeding 20% when
monitoring 256 events.

9 Related Work

Measurement Error. Most existing work that avoids multi-
plexing does so by running a target application multiple times,
each time monitoring a different subset of events. Results
are aligned into a single trace [31, 41, 48] using techniques
such as dynamic time warping [7] or uniform scaling [47].
However, these offline techniques are unsuitable for online
monitoring, which is required in many applications such as
resource orchestration [37, 54] and performance interference
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mitigation [25, 54, 72]. Additionally, merging runs may fail
to identify some performance anomalies, as performance can
vary widely across runs, with anomalies only appearing in
some.

BayesPerf [2] schedules events online, constructing event
groups to guarantee statistical dependencies between events
in adjacent groups, thus inferring the counts of unscheduled
events. However, it has three main drawbacks. First, it de-
pends on algebraic relationships among events, which are
unavailable for most event primitives on platforms like In-
tel [18], IBM [30], and ARM. Second, it incurs prohibitive
overhead, necessitating customized hardware for acceleration.
Third, its scheduling algorithm is designed offline, preventing
adaptation for dynamic workloads. With elastic scheduling,
Tintin overcomes these limitations and achieves accuracy im-
provements comparable to those reported in prior work [2].

Attribution Error. Existing work on attribution falls into two

main categories. The first focuses on precise event filtering for
target profiling scopes, achieved either through efficient instru-
mentation during compilation [1, 62] or by using techniques
for post-mortem analysis [64]. The second addresses conflicts
within overlapping profiling scopes. For example, Metis [71]
virtualizes HPCs using time division, allowing multiple users
in different virtual machines to monitor various CPU events
simultaneously. Tintin unifies these functionalities across var-
ious use cases through the ePX and system support.

Another line of research focuses on architectural misattri-
bution caused by skid effects, which is discussed in §2.2. Ad-
dressing this issue often requires hardware redesign [28, 29].
Software-based methods, such as padding with dummy in-
structions, are also an alternative [74] but incur significant
overhead. These are out of scope for this paper.

10 Conclusion

This paper introduces Tintin, a hardware event profiling in-
frastructure designed to address event multiplexing errors and
the inflexibility of profiling scope definitions. Designed with
a three-component structure, each component of Tintin indi-
vidually mitigates these tensions to some degree, while also
collaboratively working together for enhanced overall perfor-
mance. The evaluation results showcase that Tintin provides
flexibility in profiling and improves profiling accuracy with
minimal overhead.
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Algorithm 1: Elastic_Scheduling

Input: Lists {𝑈min
𝑖
}, {𝑈max

𝑖
}, {𝐸𝑖} sorted in

non-decreasing order of
𝑈max

𝑖
−𝑈min

𝑖

𝐸𝑖
and a

desired utilization 𝑈𝐷

Output: The list of assigned 𝑈𝑖 values

1 𝑈SUM← 0; 𝐸SUM← 0; Δ← 0
2 forall 𝜏𝑖 ∈ Γ do
3 𝑈SUM =𝑈SUM +𝑈max

𝑖

4 𝐸SUM = 𝐸SUM +𝐸𝑖

5 end

6 forall 𝜏𝑖 ∈ Γ do
7 if

(
𝑈max

𝑖
− 𝑈SUM−(𝑈𝐷−Δ)

𝐸SUM
×𝐸𝑖 ≤𝑈min

𝑖

)
then

8 𝑈𝑖←𝑈min
𝑖

9 Δ← Δ+𝑈min
𝑖

10 if (Δ >𝑈𝐷) then return INFEASIBLE
11 𝑈SUM←𝑈SUM −𝑈max

𝑖

12 𝐸SUM = 𝐸SUM −𝐸𝑖

13 else
14 𝑈𝑖←𝑈max

𝑖
− 𝑈SUM−(𝑈𝐷−Δ)

𝐸SUM
×𝐸𝑖

15 end
16 end
17 return FEASIBLE

A Solving the Scheduling Problem

The scheduling problem in Section 6 assigns a utilization to
each event of interest to minimize total expected normalized
error, with additional weights assignable by the user. This is
expressed as the following constrained optimization problem:

min
𝑈𝑖

𝑛∑
𝑖=1

𝑤𝑖𝑉(r𝑖)
𝑥2
𝑖

· (1−𝑈𝑖)2 (2a)

s.t.
𝑛∑
𝑖=1

𝑈𝑖 ≤ 𝑚 (2b)

∀𝑖 𝑈min ≤𝑈𝑖 ≤ 1 (2c)

where 𝑈𝑖 is the utilization assigned to event 𝑒𝑖 , 𝑤𝑖 is a user-
defined weight, 𝑉(r𝑖) is the observed variance, and 𝑥𝑖 is the
estimated count. 𝑚 denotes the number of available HPCs.

This reduces in polynomial time to the formulation in [14] of
elastic scheduling as a constrained optimization problem,

min
𝑈𝑖

𝑛∑
𝑖=1

1
𝐸𝑖
(𝑈max

𝑖 −𝑈𝑖)2 (3a)

s.t.
𝑛∑
𝑖=1

𝑈𝑖 ≤𝑈𝐷 (3b)

∀𝑖 , 𝑈min
𝑖 ≤𝑈𝑖 ≤𝑈max

𝑖 , (3c)

by setting 𝑈max
𝑖

= 1, 𝐸𝑖 =
𝑥2
𝑖

𝑤𝑖𝑉(r𝑖 ) , and 𝑈𝐷 = 𝑚.

A.1 Optimal Solution Algorithm

From [63, Algorithm 1], this can be solved in quasilinear time
by the procedure listed in Algorithm 1.

A.2 Constructing a Schedule

PMUEi

Ej

Ek

Scheduler
Ei

EjEk

Ek HPC #1

HPC #2

uncertainty

. . .

0 TTimeline

Figure 18: Constructing a schedule of 3 events on 2 HPCs from
assigned utilizations.

Although the adopted elastic scheduling problem targets
uniprocessor scheduling, we now show that our problem ad-
mits a valid schedule for events on multiple HPCs. We denote
by 𝐻 the hyperperiod of the schedule, after which it repeats
itself; for simplicity of explication we normalize to 𝐻 = 1.
Events and counters are considered in order: event 𝑒1 is as-
signed the interval [0,𝑈1] on counter 𝑐1. Events are placed
sequentially on a counter until total counter utilization would
exceed 1, whereupon an event’s utilization is split between
the end of the hyperperiod interval on the current counter
and the beginning of the interval on the next open counter.
This continues until all events have been scheduled. This
method guarantees that no event is scheduled concurrently
on two counters at the same time: if an event is assigned to
two counters, the assignments are respectively at the end and
beginning of the hyperperiod. Since 𝑈𝑖 ≤ 1, these intervals
do not overlap, as illustrated in Figure 18.
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