
Limited-Preemption EDF Scheduling for Multi-Phase1

Secure Tasks2

Benjamin Standaert #�3

Washington University in St. Louis, United States4

Fatima Raadia # �5

Wayne State University, United States6

Marion Sudvarg1 # Ñ �7

Washington University in St. Louis, United States8

Sanjoy Baruah #Ñ �9

Washington University in St. Louis, United States10

Thidapat Chantem #Ñ �11

Virginia Tech, United States12

Nathan Fisher #Ñ �13

Wayne State University, United States14

Christopher Gill # Ñ �15

Washington University in St. Louis, United States16

Abstract
Safety-critical embedded systems such as autonom-
ous vehicles typically have only very limited compu-
tational capabilities on board that must be carefully
managed to provide required enhanced functional-
ities. As these systems become more complex and
inter-connected, some parts may need to be secured
to prevent unauthorized access, or isolated to ensure
correctness.

We propose the multi-phase secure (MPS) task
model as a natural extension of the widely used
sporadic task model for modeling both the timing
and the security (and isolation) requirements for
such systems. Under MPS, task phases reflect execu-

tion using different security mechanisms which each
have associated execution time costs for startup
and teardown. We develop corresponding limited-
preemption EDF scheduling algorithms and asso-
ciated pseudo-polynomial schedulability tests for
constrained-deadline MPS tasks. In doing so, we
provide a correction to a long-standing schedulab-
ility condition for EDF under limited-preemption.
Evaluation shows that the proposed tests are ef-
ficient to compute for bounded utilizations. We
empirically demonstrate that the MPS model suc-
cessfully schedules more task sets compared to non-
preemptive approaches.

2012 ACM Subject Classification Computer systems organization → Real-time systems
Keywords and phrases real-time systems, limited-preemption scheduling, trusted execution environments
Digital Object Identifier 10.4230/LITES.1.1.42
Acknowledgements This research was supported in part by NSF Grants CPS-1932530, CNS-2141256,
CNS-2229290, IIS-1724227, CNS-2038609, CCF-2118202, CNS-2211641, and CPS-2038726. We, the
authors, would like to thank the reviewers for their constructive remarks.
Received Date of submission Accepted Date of acceptance Published Date of publishing
Editor LITES section area editor

1 Corresponding author

© Benjamin Standaert, Fatima Raadia, Marion Sudvarg, Sanjoy Baruah, Thidapat Chantem, Nathan Fisher,
Christopher Gill;
licensed under Creative Commons License CC-BY 4.0

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 42, pp. 42:1–42:27
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.g.standaert@wustl.edu
mailto:fatima.fr@wayne.edu
https://orcid.org/0009-0008-2481-1293
mailto:msudvarg@wustl.edu
http://www.sudvarg.com
https://orcid.org/0000-0003-2318-7763
mailto:baruah@wustl.edu
https://engineering.washu.edu/faculty/Sanjoy-Baruah.html
https://orcid.org/0000-0002-4541-3445
mailto:tchantem@vt.edu
https://www.rtx.ece.vt.edu
 https://orcid.org/0000-0002-5688-5720
mailto:fishern@wayne.edu
https://engineering.wayne.edu/profile/dx3281
https://orcid.org/0000-0002-9733-3842
mailto:cdgill@wustl.edu
https://www.cse.wustl.edu/~cdgill/
https://orcid.org/0000-0003-0366-8586
https://doi.org/10.4230/LITES.1.1.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lites
https://www.dagstuhl.de/lites
https://www.dagstuhl.de

42:2 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

1 Introduction17

In today’s interconnected world, the security of real-time systems has emerged as a primary18

concern, e.g., [42, 26, 29, 23, 38, 45, 34], given the widespread integration of electronic devices into19

various aspects of daily life. However, the implementation of security measures often introduces20

additional resource requirements, such as increased computational overhead, or imposes specific21

constraints on application behaviors; for example, this could involve necessitating computation22

that requires isolation or cannot be preempted.23

For example, control flow integrity (CFI) checks may be needed to ensure correct program24

execution. However, such checks, which require CPU time in addition to normal code execution,25

must be carried out at specific time points (e.g., after branching) and allowing for preemption26

may result in an arbitrary computation being performed but not detected. As another example, a27

task that is responsible for taking sensor readings may need to execute in isolation in order to28

ensure that another task cannot deduce when an event of interest occurs [34].29

Since implementing security measures requires some of the same resources that the real-time30

tasks need to advance their execution, a co-design approach that explicitly considers security31

cost/requirements along with real-time requirements is potentially more effective at managing32

limited computational resources. For instance, trusted execution environments (TEEs) provide33

isolation of code and data in hardware at the expense of startup and teardown costs. A scheduling34

approach that does not consider this specific security-driven overhead may elect to switch between35

the secure world (i.e., executing in TEE) and the normal world (no TEE) indiscriminately. This36

may result in an excessive amount of overhead incurred by, e.g., hardware mode switching, saving37

and restoring the stack, and copying data, resulting in deadline misses. A security-cognizant38

scheduler, on the other hand, would make judicious decisions based on both security and real-time39

requirements, e.g., by bundling up multiple TEE executions and executing them one immediately40

after the other so as to have to pay for startup and teardown cost only once [35].41

A recent ISORC paper [10] proposed and developed algorithms that are able to provide42

provable correctness of both the timing and some security properties. We believe that such a43

scheduling-based approach to achieving security in safety-critical systems is possible, and indeed,44

necessary in embedded systems that are particularly cost- and SWaP-constrained and hence need45

to be implemented in a resource-efficient manner. However, we consider it unlikely that a ‘one size46

fits all’ solution exists; instead, security-cognizant scheduling must first explicitly identify the kinds47

of threats that are of concern by precisely defining a threat model, and design scheduling strategies48

that can be proved to be resistant to attacks under the identified threat model. We consider49

the research in [36] to be particularly noteworthy in this regard, in their explicit and methodical50

modeling of different threats in the context of the sporadic task model, and their analysis of51

vulnerabilities of current strategies (including security-agnostic fixed-priority scheduling [3] and52

the randomization-based schedule obfuscation approaches, e.g., the one in [46]) to such threats.53

Security-Cognizant Scheduling. We believe the methodology formalized and used in [36] holds54

great promise as a means of integrating security and timing correctness concerns within a common55

framework. This methodology was articulated in [10] as follows: security for safety-critical real-time56

embedded systems can be achieved by (i) explicitly representing specific security considerations57

within the same formal frameworks that are currently used for specifying real-time workloads,58

thereby extending notions of correctness to incorporate both the timing and the security aspects;59

and (ii) extending previously-developed techniques for achieving provable timing correctness to60

these models, thus assuring that both timing and security properties are correct.61

This Work. This paper extends our prior work in [8], which applied the methodology62

articulated in [10] to the following problem in system design for real-time + security. We consider63

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:3

computer platforms upon which multiple different security mechanisms (such as TEEs, encryp-64

tion/decryption co-processors, FPGA-implemented secure computations, etc.) co-exist. Depending65

upon their security requirements, different pieces/parts of the (real-time) code may need to use66

different security mechanisms at different times. We therefore assume that the code is broken up67

into phases, with different consecutive phases needing to use different sets of security mechanisms68

– the security mechanisms used by each phase are specified for the phase. We assume that there is69

a startup/teardown overhead cost (for data communication, initialization, etc.) expressed as an70

execution duration, associated with switching between different security mechanisms. In other71

words, there is a time overhead associated with switching between the execution of different phases.72

Contributions. As in our prior work that this paper extends [8], we formalize the workload73

model discussed above as the Multi-Phase Secure (MPS) task model, with multiple independent74

recurrent processes of this kind that are to execute upon a single shared preemptive processor. We75

start out in Section 4 assuming that each recurrent process is represented using the widely-used76

3-parameter sporadic task model [6]. For this model, we represent the problem of ensuring77

timeliness plus security as a schedulability analysis problem, which we then solve by adapting78

results obtained in prior work (e.g., [7, 12, 16, 37, 17]) on limited-preemption scheduling. Later in79

Section 5, we propose a generalization that models conditional execution within each recurrent80

process. Its original treatment in [8] makes a simplifying assumption that was later addressed in81

another extension; we therefore present the conditional model and the simplifying assumption in82

this paper, but leave the analysis for conditional execution to the more accurate treatment in [39].83

We emphasize that although the designs of these models are motivated by security considerations84

– they arose out of some security-related projects that we are currently working on – we are proposing85

a scheduling model and associated algorithms, not a complete solution to a particular security86

problem. That is, although our model draws inspiration from security concerns, it (i) does not87

claim a perfect match to all security requirements; and (ii) it should have applicability beyond the88

security domain – indeed, we suggest that the results presented in this paper be looked upon as a89

generalization of the rich body of real-time scheduling theory literature on limited-preemption90

scheduling.91

Extensions to the Prior Work. This paper extends, corrects, and clarifies our prior results92

in [8], making the following new contributions. Section 3.2 presents a correction to the condition93

in [7, 12] for EDF schedulability of limited-preemption tasks. Section 4 leverages the corrected94

condition to introduce pseudo-polynomial schedulability analysis for sets of MPS tasks, improving95

the execution time of the associated algorithms originally proposed in [8], especially for tasks with96

implicit deadlines. With these improvements, we are able to evaluate larger sets of tasks with97

more realistic ranges of periods. We also address inconsistencies in [8] between the theoretical98

model and its implementation by using a continuous-time representation of the algorithms. These99

are reflected in the new results in Section 6, which more clearly demonstrate the advantages of100

our approach over non-preemptive schedulers.101

Organization. The remainder of this manuscript is organized as follows. After briefly discussing102

some related scheduling-theory results in Section 2, Section 3.2 presents the correction to the103

limited-preemption EDF schedulability condition of [7, 12]. We then motivate and formally define104

the MPS sporadic tasks model in Section 4, and provide both pre-runtime analysis and a run-time105

scheduling algorithm for MPS sporadic task systems upon preemptive uniprocessor platforms. In106

Section 5 we further generalize the workload model to be able to represent conditional execution.107

We have performed schedulability experiments to evaluate both the effectiveness of our algorithms108

and the performance improvements over their original implementations in [8]. We report the109

results in Section 6. We conclude in Section 8 by pointing out some directions in which we110

LITES

42:4 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

intend to extend this work, and by placing our results within a larger context on the timing- and111

security-aware synthesis of safety-critical systems.112

2 Some Real-Time Scheduling Background113

2.1 The Sporadic Task Model [6]114

In this model, recurrent processes are represented as sporadic tasks τi = (Ci, Di, Ti). Each task115

has three defining characteristics: worst-case execution requirement (WCET) Ci, relative deadline116

Di, and period (minimum inter-arrival duration) Ti. The sporadic task τi generates a series of jobs,117

with inter-arrival times of at least Ti. Each job must be completed within a scheduling window,118

which starts at the job’s release time and ends Di time units later, and the job’s execution time is119

limited to Ci units. A sporadic task system Γ is made up of multiple independent sporadic tasks.120

We assume without loss of generality that tasks are indexed in non-decreasing relative deadline121

order (i.e., if i < j then Di ≤ Dj).122

Processor Demand Analysis (PDA). A sporadic task system can be scheduled optimally by123

the Earliest Deadline First (EDF) [27] scheduling algorithm, given a preemptive uniprocessor. To124

determine whether a specific task system can be correctly scheduled by EDF, Processor Demand125

Analysis (PDA) [11] can be utilized. PDA is a necessary and sufficient algorithm that is also126

optimal. The key idea of PDA is built upon the demand bound function (dbf). Given an interval127

length of L such that L ≥ 0, the dbf for a sporadic task τi can be represented by dbfi(L): the128

maximum possible aggregate execution time required by jobs of task τi such that they arrive in L129

and have deadlines before L. The following equation was derived in [6] to compute its value:130

dbfi(L) = max
(⌊

L−Di

Ti

⌋
+ 1, 0

)
× Ci (1)131

For a task system τ to be correctly scheduled by EDF, the following was derived in [6] as a132

necessary and sufficient condition for all L ≥ 0:133 [(∑
τi∈Γ

dbfi(L)
)
≤ L

]
(2)134

The Testing Set. A naïve application of PDA requires testing the validity of Equation 2 for all135

intervals. However, a more efficient approach, outlined in [6], involves checking only values of L136

that follow the pattern L ≡ (k × Ti + Di) for some non-negative integer k and some τi ∈ Γ.137

Furthermore, it suffices to test such values that are less than the least common multiple of all138

the Ti parameters. The collection of all such values of t for which it is necessary to verify that139

Condition 2 holds true in order to confirm EDF-schedulability is referred to as the testing set for140

the sporadic task system Γ, often denoted as T (Γ).141

It is worth noting [6] that, in general, the size |T (Γ)| of the testing set T (Γ) can be exponential142

in the representation of τ . However, it has been proven [5, Theorem 3.1] that for bounded-143

utilization task systems —i.e., systems Γ that fulfill the additional requirement that
∑

τi∈Γ Ui ≤ c144

for some fixed constant c strictly less than 1— it is sufficient to check a smaller testing set with145

pseudo-polynomial cardinality relative to the representation of Γ, consisting of all values of the146

form L ≡ (k × Ti + Di) not exceeding147

min
(

P, max
(

Dmax,
1

1− U
·

n∑
i=1

Ui · (Ti −Di)
))

(3)148

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:5

where P is the least common multiple of all Ti, and Dmax is the maximum of all Di parameters.149

We note that for bounded-utilization implicit-deadline tasks —those for which Ti = Di for every150

task τi— this bound reduces to Dmax. In this extension, we apply this smaller testing set to our151

scheduling algorithms for MPS tasks.152

Since we can check Condition 2 in linear (Θ(n)) time for any given value of t, these observations153

imply that we can perform an exponential-time EDF-schedulability test for general task systems154

and a pseudo-polynomial-time one for bounded-utilization systems.155

Unfortunately, the general problem is NP-hard in the strong sense [18, 21, 20], and the156

bounded-utilization variant is NP-hard in the ordinary sense [19]. Therefore, it is unlikely that we157

will discover more efficient schedulability tests.158

2.2 Limited-Preemption Scheduling159

The limited-preemption sporadic task model, as introduced by Baruah et al. [7], adds to the task160

specification τi = (Ci, Di, Ti, βi) a chunk-size parameter βi in addition to the regular parameters161

Ci, Di, and Ti. This parameter βi indicates that each job of task τi may need to execute162

non-preemptively for up to βi time units.163

To schedule tasks in the limited-preemption sporadic task model, the limited-preemption164

EDF scheduling algorithm was proposed [7, 12]. Like its preemptive counterpart, the limited-165

preemption EDF algorithm prioritizes jobs based on their (absolute) deadlines. If a job of task τi166

with remaining execution time e is executing and a new job with an earlier deadline arrives, then167

τi’s job may execute for an additional min(e, βi) time units before incurring a preemption.168

Baruah and Bertogna [7, 12] showed that a task system is not schedulable under the limited-169

preemption EDF model if and only if either of the following conditions are true:170

∃L : L ≥ 0 :
∑
τi∈Γ

dbfi(L) > L (4)171

or172

∃τi : ∃L : 0 ≤ L < Di : βi +
∑

τj∈Γ,j ̸=i

dbfj(L) > L (5)173

Noting that dbfi(L) = 0 when L < Di, we combine and invert the two conditions, giving a174

necessary and sufficient condition for successfully scheduling a limited-preemption sporadic task175

system Γ upon a single preemptive processor using the limited-preemption EDF algorithm:176

∀L,

(∑

τi∈Γ
dbfi(L)

)
+

(blocking due to limited preemption)︷ ︸︸ ︷
max

{τi|Di>L}

{
βi

}
≤ L

 (6)177

Unlike the exact test for preemptive uniprocessor EDF-schedulability (Equation 2), Equation 6178

contains an additional term on the left-hand side of the inequality that accounts for blocking due179

to later-deadline (and hence lower-priority) jobs. Specifically, the maxτi|Di>L βi term is a blocking180

term that captures the potential delay caused by lower-priority jobs that were already executing181

at the start of the interval, for a duration of up to their chunk size. Since we assume that all tasks182

have non-negative execution time, this blocking term is always non-negative.183

In this extension to the prior work in [8], we use a continuous-time representation of the blocking184

term in Equation 6. The prior work used a discrete-time representation, maxτi|Di>L βi − 1, which185

requires both task periods and execution times to be represented as integers. This introduces186

several challenges. First, it is more difficult to reason about the effect of inserting preemption187

LITES

42:6 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

points; blocking times (chunk sizes) must also be represented as integers, but the number of188

“chunks” might not evenly divide the execution time. Second, there is a tradeoff when choosing189

the precision at which to represent execution time units. If the unit of time is coarse, then the190

execution time of each phase and its corresponding startup/teardown time must be rounded up.191

If the unit of time is very short —such as a single processor tick— to achieve higher precision,192

then the testing set grows rapidly as the representations of the task periods become larger. By193

using continuous time, this extension removes these limitations, and modifies the expression to194

allow execution times to take any non-negative real value.195

Based on this observation, the Processor Demand Analysis (PDA) algorithm has been extended196

to apply to limited-preemption systems as well [7]. The extension is straightforward: Equation 6197

replaces Equation 2 in the algorithm, and the algorithm proceeds as usual.198

However, we note that Expression 6 cannot hold true for values of L of the form199

0 ≤ L < min
(

Dmin, max
{τi}
{βi}

)
(7)200

where Dmin = mini{Di}, suggesting incorrectly that a set of tasks is not EDF schedulable if201

any task has non-zero blocking time. In the next section of this extension, we present a corrected202

condition that addresses this issue, which we then apply to scheduling of MPS tasks in Section 4.203

3 The Corrected Limited-Preemption EDF Schedulability Condition204

In this section, we present a correction to the condition of Baruah and Bertogna [7, 12] for EDF205

schedulability of limited-preemption tasks.206

3.1 The Problem207

As discussed in the prior section, in [7, 12], Baruah and Bertogna claimed as a necessary and208

sufficient condition for scheduling a limited-preemption sporadic task system upon a single209

preemptive processor using EDF that210

∀L,

(∑

τi∈Γ
dbfi(L)

)
+

(blocking due to limited preemption)︷ ︸︸ ︷
max

{τi|Di>L}

{
βi

}
≤ L

 (8)211

where βi is the blocking due to limited preemption induced by task τi.212

From the definition of the demand bound function dbfi(L) in Equation 1, we observe that213

dbfi(L) = 0 for L < Di. Then for L < Dmin (i.e., L < Di for all tasks τi), the above condition214

requires L ≥ maxτi|Di>L{βi}; as we are already considering the case that L < Dmin, this can be215

simplified to L ≥ maxτi
{βi}.216

This implies that for values of L such that L < Dmin, the above condition cannot hold true if217

L does not also exceed βi for all tasks τi. More simply, the condition cannot hold true for values218

of L of the form shown in Expression 7. Because processor demand analysis requires that the219

condition hold true for all values of L ≥ 0, this would deem any set of limited-preemption220

tasks with non-zero blocking time to be unschedulable by EDF.221

3.2 The Correction222

As this is obviously not true – i.e., there are limited-preemption task sets that are schedulable by223

EDF, we now set out to correct the above condition. We do so by pointing out a subtlety to the224

proof in [7] of the condition in Expression 6.225

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:7

That proof constructs the blocking time condition by defining a minimal unschedulable set
of jobs for which ta represents the earliest arrival time of those jobs and tf is the time at which
the first deadline miss occurs. Additionally, for each job τi, it defines qi as representing an upper
bound on the time for which τi can execute non-preemptively. In this system, there is exactly
one job with a deadline after tf ; we let τj be the task that generates this job. If t1 is the time
at which that job begins to execute non-preemptively and t2 is when it stops executing, then [7,
Equation 4] states that

n∑
i=1,i̸=j

dbf(τi, tf − t1) > tf − t2

As qj is a bound on the non-preemptive execution time, the proof in [7] then claims that
t2 − t1 ≤ qj . We observe that since t2 ≤ tf , it also follows that t2 − t1 ≤ tf − t1. We can
therefore combine these inequalities to make the statement that t2 − t1 ≤ min(qj , tf − t1). In light
of this, we modify the rest of the proof in [7]. Now, it follows that

n∑
i=1,i̸=j

dbf(τi, tf − t1) + min(qj , tf − t1) > tf − t2 + (t2 − t1)

We then replace the expression tf − t1 with a time L. Since tf < Dj , it follows that L < Dj ;
the dbf of τj will therefore be zero at L and we can rewrite the condition as:

n∑
i=1

dbf(τi, L) + min(qj , L) > L

This condition checks whether some task τj causes excessive blocking at times L < Dj ; to226

determine if the system is schedulable, we can therefore test whether the following condition holds227

for any task τi at any time L ≥ 0, considering blocking times from just those tasks for which228

L < Di:229 (∑
τi∈Γ

dbfi(L)
)

+ min
(

L, max
{τi|Di>L}

{βi}
)
≤ L (9)230

Then when L < Dmin, the dbf for each task is 0, so the condition will always be satisfied.231

Furthermore, when L ≥ Dmin,
∑

i dbf(Li) > 0, and so the condition cannot be satisfied when232

min(L, maxi βi) ≥ L. We can therefore begin the testing set of our implementation at Dmin, and233

only check the blocking time when determining whether the condition is violated.234

4 Systems of Multi-Phase Secure (MPS) Sporadic Tasks235

In this section we extend the sporadic task model to consider the setting where the workload236

of each task comprises an ordered sequence of different phases, with each phase required to use237

a different security mechanism.2 Therefore, switching between phases or between jobs incurs238

some teardown/startup overhead, which translates to an additional execution duration. We239

are given a system of multiple such independent tasks that are to be scheduled upon a shared240

preemptive processor. If an executing task is preempted within a phase, the assumption that the241

tasks in the system are independent of one another implies that we must conservatively assume242

2 Note that we consider a unique combination of security mechanisms to be its own security mechanism. Thus,
a portion of a task subject to multiple overlapping security mechanisms would execute in its own phase.

LITES

42:8 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

that the preempting task may be executing using a different security mechanism; hence, the243

teardown/startup overhead may be incurred again. In some systems, the cost of a preemption244

may be less than the full startup/teardown cost of a phase; this can be accounted for by adding245

any additional cost to the execution time of the phase. When a phase of a task is selected for246

execution we assign it responsibility for taking care of both the startup that must happen at that247

point in time, and the subsequent teardown that occurs when it either completes execution or is248

preempted by a higher-priority task. Hence a phase with execution duration c that is preempted k249

times is responsible for (and hence should have been budgeted for) a total execution duration of250

c + (k + 1)× (startup cost + teardown cost) (10)251

A Motivating Example. To motivate the MPS task model, consider the case of trusted execution252

environments (TEEs), a hardware feature that provides strong isolation of code and data. Although253

this isolation has significant security benefits, broadly-used TEE implementations such as OP-254

TEE [1] are sometimes limited to using only a small fraction of the available system memory [2]255

and code running in a TEE has limited access to common system APIs. In addition, placing more256

functionality inside a TEE increases the probability that an unidentified vulnerability compromises257

the isolated TEE environment; a number of works based on TEEs have cited minimization of the258

trusted computing base (TCB) as a key design concern [28, 32, 40]. A fine-grained minimization259

of the code placed in a TEE can lead to the existence of tasks that span multiple “worlds” – for260

example, a task may begin execution in the normal world (i.e. no TEE), switch to the secure261

world (executing in the TEE) to perform a sensitive cryptographic operation, and then return to262

the normal world to complete its work. In some cases, switching across worlds can also be used as263

a workaround for TEE memory limitations. For example, large neural networks may be executed264

securely by copying a single layer into the TEE, computing and storing an intermediate result,265

and then returning to the normal world to retrieve the next layer [4].266

However, switching between worlds induces TEE startup and teardown costs, the impact267

of which varies depending on the choice of processor and TEE software implementation; one268

implementation based on an Arm Cortex-M development board saw costs on the order of micro-269

seconds [33], while an implementation using OP-TEE on a Raspberry Pi with a Cortex-A processor270

saw overheads ranging from hundreds of microseconds to tens of milliseconds [35]. A scheduling271

approach that does not consider these significant context-switching costs may preempt execution272

for higher-priority jobs indiscriminately, resulting in missed deadlines due to the overheads incurred273

by frequent startup/teardown.274

4.1 Task Model275

We have a task system Γ comprising N independent recurrent tasks τ1, τ2, . . . , τN , to be scheduled276

upon a single preemptive processor. The task τi is characterized by a period/inter-arrival separation277

parameter Ti and a relative deadline Di ≤ Ti . The body of the task – the work that must be278

executed each time the task is invoked – comprises ni phases, denoted vi,1, vi,2, . . . , vi,ni , that279

must execute in sequence upon each job release of the task:280

vi,1 vi,2 vi,3 vi,ni

281

As previously discussed, we assume that successive phases are required to execute using different282

security mechanisms (i.e., vi,j and vi,j+1 execute using different security mechanisms for all j,283

1 ≤ j < ni). Let c(vi,j) denote the WCET of phase vi,j , and q(vi,j) denote the sum of the startup284

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:9

cost and the teardown cost associated with the security mechanism within which phase vi,j is to285

execute. The aggregate WCET of all phases of this task during its execution is thus given by the286

following expression287

ni∑
j=1

(
c(vi,j) + q(vi,j)

)
288

However, suppose that during some execution of task τi the j’th phase is preempted kj times for289

each j, 1 ≤ j ≤ ni; as discussed above (Equation 10), the cumulative WCET of all phases of this290

task during this execution is then given by the expression291

ni∑
j=1

(
c(vi,j) + (kj + 1)× q(vi,j)

)
292

The figure below depicts a 2-phase job, denoted by vi,1 and vi,2, which is preempted once in the293

first phase and twice in the second phase. The shaded region denotes the startup and teardown294

costs for each phase of the job.295

vi,1 vi,2

x x x

vi,1a vi,1b vi,2a vi,2b vi,2c

296

4.2 Overview of Approach297

Given a task system Γ comprising multiple independent MPS tasks to be scheduled upon a298

single preemptive processor, we will first execute a schedulability analysis algorithm to determine299

whether this system is schedulable, i.e., whether we can guarantee to schedule it to always meet all300

deadlines, despite the costs incurred by startup/teardown. This schedulability analysis algorithm301

essentially constructs a limited-preemption task τ̂i corresponding to each task τi, and determines302

whether the resulting limited-preemption task system can be scheduled by the limited-preemption303

EDF scheduling algorithm [7, 12] to always meet all deadlines. If so, then during run-time the304

original task system is scheduled using the limited-preemption EDF scheduling algorithm, with305

chunk-sizes as determined for the corresponding constructed limited-preemption tasks. We point306

out that if a chunk-size βi is determined for the limited-preemption task τ̂i, then the j’th phase307

of τi’s jobs will execute in no more than ⌈c(vi,j)/(βi − q(vi,j))⌉ contiguous time-intervals (i.e., it308

would experience at most (⌈c(vi,j)/(βi − q(vi,j))⌉ − 1) preemptions); equivalently, the cumulative309

WCET of all the phases of each of task τi’s jobs will be no more than310

ni∑
j=1

(
c(vi,j) +

⌈
c(vi,j

βi − q(vi,j)

⌉
× q(vi,j)

)
Assumption of Fixed-Preemption Points. We make the conservative assumption that once311

the chunk-size is determined for each task then the preemption points in the code are statically312

determined prior to run-time. That is, once the chunk-size βi is determined for a task τi, a313

preemption is statically inserted into the task’s code after the code has executed non-preemptively314

for no more than βi time units; this is referred to as the fixed-preemption point model [43]. Once315

τi’s program reaches this statically-placed preemption point, the security mechanism for the task’s316

current phase must317

LITES

42:10 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

1. complete a teardown (e.g., a flush of the cache, or ending a TEE session) to ensure task318

execution integrity during preemption;319

2. invoke the operating system’s scheduler to see if there are any high-priority tasks awaiting320

execution; and321

3. upon resuming execution as the highest-priority task the security mechanism must perform a322

startup (e.g., starting a new TEE session from the task’s last executed instruction).323

Since the preemption points are statically inserted into the code, we must perform the324

teardown/startup for a phase each time a preemption point is encountered (even if there is no325

other task active in the system at that time). While clearly this approach suffers from potentially326

performing unnecessary preemptions, it is often used in safety-critical settings due the precise327

predictability that fixed-preemption points provide. In future work, we will explore the floating328

preemption point model and other models that would permit the system to avoid unnecessary329

preemptions and teardowns/startups.330

4.3 The Schedulability Test331

We now describe our schedulability test. As discussed above, our approach is to construct for332

each task τi a corresponding limited-preemption task τ̂i. This limited-preemption task is assigned333

the same relative deadline parameter value (i.e., Di) and the same period parameter value (i.e.,334

Ti) as τi; its WCET Ĉi and its chunk-size parameter βi are computed as described below, and in335

pseudo-code form in Algorithm 1.336

We introduce integer variables cnt(vi,j) for each i, 1 ≤ i ≤ n, and for each j, 1 ≤ j ≤ ni, to337

denote the maximum number of contiguous time-intervals in which the j’th phase of τi may need338

to execute. Then Ĉi, the WCET of each job of task τ̂i, can be written as339

Ĉi
def=

ni∑
j=1

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)
(11)340

where the second term within the summation represents the maximum preemption overhead (the341

startup cost plus the teardown cost) that is incurred by the j’th phase of task τi.342

It remains to specify the values we will assign to the cnt(vi,j) variables. We will start out343

assuming that each phase of each task τi executes non-preemptively – i.e., in one contiguous time-344

interval. We do this by initially assigning each cnt(vi,j) the value 1; we will describe below how345

the cnt(vi,j) values are updated if enforcing such non-preemptive execution may cause deadlines346

to be missed. With each cnt(vi,j) assigned the value 1, it is evident that the largest duration for347

which task τi will execute non-preemptively is equal to maxni
j=1 {c(vi,j) + q(vi,j)}; we initialize the348

chunk-size parameters —the βi values— accordingly: for each task τi,349

βi ←
nimax

j=1
{c(vi,j) + q(vi,j)} (12)350

In this manner, we have instantiated the parameters for one limited-preemption task τ̂i corres-351

ponding to each task τ ∈ Γ. We must now check whether the limited-preemption task system352

Γ̂ = {τ̂1, τ̂2, . . . , τ̂N} so obtained is schedulable using the limited-preemption EDF scheduling353

algorithm [7, 12]. We do so by checking whether Equation 9 holds for values of t in the testing354

set T (Γ̂), considered in increasing order ; we motivate this ordering below in (5). First, we split355

T (Γ̂) into two sets, T (Γ̂)1 containing all values up to and including Dmax ≡ maxτi
Di, and T (Γ̂)2356

containing all values thereafter. Then, we initialize td to denote the smallest value in T (Γ̂)1, and357

perform the following steps.358

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:11

Algorithm 1 The Preprocessing Algorithm for Systems of MPS Sporadic Tasks (see Section 4)

Input:
(
Γ
)

1 for each task τi ∈ Γ do //Initially, assume that no preemption is needed
2 for j ← 1 to ni do
3 cnt(vi,j)← 1
4 βi ← max1≤j≤ni

(c(vi,j) + q(vi,j))

5 //The testing set T (Γ)1 is all t ≡ Di + k · Ti, t ≤ Dmax for some task τi and some k ∈ N.
for td iterating in increasing order over T (Γ)1 do

6 Compute ∆(td) as per Eqn 13 //This represents the slack in the schedule at td

7 if ∆(td) < 0 then //Check whether previously-assigned chunk sizes causes deadline miss
8 return the system is not schedulable

9 for each τi for which Di > td do
10 if (βi > ∆(td)) then //Must reduce the value of βi

11 βi ← ∆(td)
12 for j ← 1 to ni do //For each phase of τi, ensure that it doesn’t block too much
13 if βi > q(vi,j) then //There is sufficient time in chunk to do task execution
14 cnt(vi,j) ← minκ∈N such that c(vi,j)

κ + q(vi,j) ≤ βi //Break c(vij) into small enough
pieces

15 else
16 return the system is not schedulable

17 if system utilization > 1 then
18 return the system is not schedulable

19 if all tasks have implicit deadlines Di = Ti then
20 return the system is schedulable

21 //For systems of constrained-deadline tasks, the testing set T (Γ)2 is all t ≡ Di + k · Ti,
Dmax < t and not exceeding the bound defined in Expression 3 for some task τi and some k ∈ N.
for td iterating in increasing order over the testing set T (Γ)2 do

22 Compute ∆(td) as per Eqn 13
23 if ∆(td) < 0 then
24 return the system is not schedulable

25 return the system is schedulable

1. If Equation 9 is satisfied for td, we set td to be the next-smallest value in T (Γ̂)1, and repeat359

this step.360

2. If Equation 9 is violated for td and the first term in the LHS of Equation 9 is > td, then we361

conclude that the system is not schedulable and return.362

Suppose, however, that a violation of Equation 9 occurs due to the blocking term in Equation 9.363

That is, the first term in the LHS of Equation 9 is ≤ td when Equation 9 is instantiated with364

t← td, but the sum of the first and second terms exceeds td. For this to happen, it must be365

the case that some τ̂i with Di > td is blocking “too much;” we must reduce the amount of366

blocking each such task can cause (i.e., reduce its βi parameter). Below, we describe how to367

do so.368

3. Let ∆(td) denote the amount of blocking that can be tolerated at td without causing a deadline369

miss:370

∆(td) def= td −
∑

τ̂k∈Γ̂

dbf(τ̂k, td) (13)371

LITES

42:12 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

As discussed above, each τ̂i with Di > td must ensure that its blocking term, βi, is no greater372

than ∆(td). For each such task with βi currently greater than ∆(td), we may need to increase373

cnt(vi,j), the number of contiguous time-intervals in which its j’th phase may execute for each374

of its phases vi,1, vi,2, . . . , vi,ni , in the following manner:375

cnt(vi,j)← min
κ∈N

such that
c(vi,j)

κ
+ q(vi,j) ≤ ∆(td) (14)376

That is, we reduce blocking in order to satisfy Equation 9 for td by potentially increasing the377

number of preemptions (and thereby incurring additional teardown/startup overhead). In378

prior work [8], we assumed that tasks had integer execution times and hence used βi − 1 as379

the blocking term; here, we use continuous time and therefore do not subtract a time segment.380

4. Such additional overhead must be accounted for; this requires that Ĉi, the WCET parameter381

of the limited-preemption task τ̂i, must be updated (i.e., potentially increased) by recomputing382

it using Equation 11 (reproduced below):383

Ĉi ←
ni∑

j=1

(
c(vi,j) + cnt(vi,j)× q(vi,j)

)
384

(Notice that since some of the cnt(vi,j) values may have increased, the value of Ĉi may also385

increase.)386

5. Recall that we have been checking the validity of Equation 9 for values of td in T (Γ̂)1, the387

partial testing set of Γ, considered in increasing order. Since we are currently considering td,388

we have therefore already validated that Equation 9 previously held for values of t < td in the389

testing set. The crucial observation now is that the increase in the value of Ĉi for any i with390

Di > td does not invalidate Equation 9 for any t < td, because the increased Ĉi values only391

contribute to the cumulative demand (the first term in the LHS of Equation 9) for values of392

t ≥ td. Hence, we do not need to go back and re-validate Equation 9 for values of t smaller393

than td.394

6. Having thus modified the cnt(vi,j) variables (as in Equation 14) in order to ensure that395

Equation 9 is satisfied by Γ̂ for td, we update the value of td to the next-smallest value in396

T (Γ̂)1, and return to Step 1 above.397

7. Once td reaches Dmax, there are no remaining tasks with Di > td, and so we are done398

updating the cnt variables. At this point, we check if the total utilization of the system,399 ∑n
i=1

W CET (τi)
Ti

> 1. If it is, the system cannot be scheduled.400

8. For an implicit-deadline system with U ≤ 1, we prove in Lemma 2 that the slack will never401

be < 0 at any later time. Therefore, we know that the system is schedulable and can return402

immediately.403

9. For a constrained-deadline system, we check the slack at each remaining point td in the testing404

set T (Γ̂)2 up to and including the testing set’s upper bound, described by Expression 3. If the405

slack is found to be < 0, the system is unschedulable, and we return immediately. Otherwise,406

is system is deemed to be schedulable.407

Computational Complexity. The number of iterations of the for-loops of Lines 5 and 21408

dominate the computational complexity; the other loops in the algorithm are polynomial in the409

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:13

number of tasks or number of vertices in a chain. The number of iterations of Line 5 is proportional410

to Dmax; for implicit-deadline systems, this is the only loop that executes. For constrained-deadline411

systems, the combined number of iterations for both loops is the number of testing set points. In412

general, for constrained-deadline sporadic task systems scheduled on a single processor, the testing413

set can be exponential in the number of tasks, but is psuedo-polynomial as long as the utilization414

is bounded by a fixed constant strictly less than 1 [5]. For MPS sporadic tasks, the utilization415

can change as we add preemption points. However, because we only continue to add preemption416

points as the testing set is traversed up to Dmax, the testing set remains pseudo-polynomial in417

size unless the utilization reaches exactly 1, in which case it becomes exponential (bounded by the418

least-common multiple of the task periods).419

Proof of Correctness/Optimality. We now provide formal arguments that our approach for420

chains yields a correct assignment of βi values for all tasks (Theorem 1) and is optimal in the421

sense that if the approach returns the system is not schedulable, then there is no assignment422

of βis that would cause the system to become schedulable (Theorem 2).423

Before we prove the two main theorems of the section, we prove a useful invariant for the for-loop424

in Line 5 of Algorithm 1. The remainder of this section assumes the fixed-preemption model where425

a preemption is always taken at a fixed-preemption point (i.e., incurring the teardown/startup426

costs). In this model, it can be shown that Equation 9 remains a necessary and sufficient condition427

for limited-preemption EDF schedulability. However, under other preemption models where we428

may skip/delay preemptions, Equation 9 is only a sufficient condition. Thus, only the correctness429

theorem will hold, and we leave an investigation of optimality for these more dynamic settings to430

future research.431

▶ Lemma 1. At the beginning of each iteration of the for-loop at Line 5 with td being the current432

testing set interval considered, the following statements hold:433

1. For any t < td, Equation 9 is satisfied for the current set of βi values.434

2. For any τi ∈ Γ such that Di ≤ td, the value of βi set by the algorithm is maximum (over all435

possible schedulable chunk-size configurations of Γ).436

Proof: Lemma 1 is, as expected, proved by induction.437

Initialization: Initially td equals Dmin; the minimum deadline is the first non-zero value of the438

dbf function for all tasks. Thus, Statement 1 is true since at all prior timepoints the first term of439

Equation 9 is zero and Equation 9 reduces to L ≤ L per the arguments in Section 3.2. Statement 2440

is also vacuously true since β1 is set to its largest possible value max1≤j≤n1 (c(v1,j) + q(v1,j)) by441

the previous loop and does not affect schedulability as τ1 cannot block any other task (by nature442

of having the smallest relative deadline).443

Maintenance: Let us consider the current testing-set point td. Let tc be the testing-set point444

considered in the previous iteration of the for-loop. Assume that Statements 1 and 2 were true at445

the beginning of the for-loop for point tc; we will show that the statements will hold for td.446

For Statement 1, we must show that Equation 9 is not invalidated when we execute the for-loop447

for tc. As was previously argued, for t < tc, the dbf values are unchanged as any changes made448

to βi values in the iteration for tc only affect the Ĉi of tasks with Di > tc. Thus, Statement 1449

continues to hold for all t < tc by assumption. We only need to show that the previous iteration450

will set the corresponding β values such that Equation 9 will also be true at tc. However, this451

obviously holds since for each τi with Di > tc, either βi already satisfied Equation 9 (and does452

not change) or it is set by Line 11 of Algorithm 1 to the largest value that satisfies Equation 9 for453

the current values of β.454

Statement 2 follows from the last observation of the previous paragraph and by the assumption455

that β values for all τi with Di ≤ tc are set to their maximum value by assumption and cannot456

LITES

42:14 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

change at tc or after. Therefore, the Ĉi values that contribute to the dbf in Equation 9 at tc are457

as small as possible. It therefore follows that any τj with tc ≤ Dj ≤ td has either already had its458

βj value set to the largest possible to satisfy Equation 9 for some t < tc or has its value set to the459

largest possible to satisfy Equation 9 at tc.460

Termination: Let td be the last testing set interval considered by the for loop in Line 5. During461

the execution of the loop, the algorithm may return the system is not schedulable. In the462

case that not schedulable is returned, Statements 1 and 2 hold for all testing set intervals up to463

(and including) td, but not necessarily after td. If the algorithm completes execution of the loop464

without returning, the Statements 1 and 2 are guaranteed to hold for all testing set intervals in465

T (Γ̂)1 (by properties of testing-sets for Equation 9 and that the last testing set point must be at466

least DN). □467

▶ Lemma 2. In an implicit-deadline task system, Equation 9 will be satisfied at all points468

L > Dmax if U ≤ 1.469

Proof: By contradiction. Consider some td > Dmax in the testing set at which Equation 9
fails to hold. At this point, there are no tasks where Di > td, and so Equation 9 becomes∑

τi∈Γ dbfi(td) ≤ td. From the definition of the dbf:

∑
τi∈Γ

max
(⌊

td −Di

Ti

⌋
+ 1, 0

)
· Ci > td

Since for an implicit-deadline task system, Di = Ti for all tasks τi,∑
τi∈Γ

max
(⌊

td

Ti

⌋
, 0
)
· Ci > td

From which it follows that ∑
τi∈Γ

max
(

td

Ti
, 0
)
· Ci > td

As td and Ti are both positive: ∑
τi∈Γ

td

Ti
· Ci > td

which implies that U > 1. □470

▶ Theorem 1. If the schedulability test returns the system is schedulable, then assignment471

of βi values by the algorithm in Algorithm 1 ensures that the task system meets all deadlines when472

scheduled by limited-preemption EDF.473

Proof: The termination argument of Lemma 1 argues that Statement 1 and therefore Equation 9474

hold for all testing set points in T (Γ̂)1. If the system is an implicit-deadline system, then by the475

check in line 17, the system utilization must be ≤ 1; by Lemma 2, Statement 1 will continue to476

hold for all points in T (Γ̂)2. If the system is a constrained-deadline system, the loop in Line 21477

will complete and return the system is schedulable if and only if Equation 9 holds for all478

points in T (Γ̂)2.479

Since Equation 9 is sufficient (and necessary for the fixed-preemption model), the task system480

Γ is schedulable by limited-preemption EDF when the assigned chunk-sizes βi are used. □481

▶ Theorem 2. If the schedulability test returns the system is not schedulable, then there482

does not exist an assignment of βi values such that Equation 6 is satisfied.483

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:15

a

b

c

d

(5, 2)

(3, 3)

Figure 1 Each vertex characterized by a pair of values; the former one representing the WCET of the
node/phase, c(v) and the latter one representing the sum of the startup and teardown cost, q(v). We
assume that the code represented by vertices a and d execute using the same security mechanism, whereas
the code represented by vertices b and c each execute using a distinct different mechanism.

Proof: If the system is not schedulable is returned while processing a testing-set interval484

td in T (Γ̂)1 then either ∆(td) < 0 or βi < q(vi,j) for some i and j. In either case, Statement 2485

of Lemma 1 implies that the βi’s set prior to td are as large as possible with respect to t < td486

for Equation 9. Therefore, if ∆(td) < 0 is true, it is not possible to find another assignment of487

βi’s to make this false. Otherwise, if βi < q(vi,j), the fact that βi was set to its maximum value488

means there does not exist a larger possible βi to successfully fit task execution into given the489

startup/teardown costs q(vi,j) of the phase vi,j .490

If the system is not schedulable is returned while processing a testing-set interval td in491

T (Γ̂)2, then Equation 9 is false for some td ∈ T (Γ̂)2. The right-side term of equation 9 considers492

only tasks where Di > L; as T (Γ̂)2 begins past Dmax, there can be no tasks matching this493

condition and therefore no assignment of βi that would reduce the right-side term. Per Statement494

2 of Lemma 1, each βi has already been maximized when considering T (Γ̂)1; reducing some βi495

can only increase the number of preemption points required and therefore increase the dbf of496

some task in the left-side term of Equation 9. Therefore, there is no alternative assignment of β’s497

that would reduce the left side of Equation 9 and cause the system to become schedulable. □498

5 Systems of Conditional MPS Sporadic Tasks499

In Section 4 we considered recurrent tasks representing ‘linear’ workflows: each task models a piece500

of straight-line code comprising a sequence of phases that are to be executed in order. In many501

event-driven real-time application systems, however, the code modeled by a task may include502

conditional constructs (“if-then-else” statements) in which the outcome of evaluating a condition503

depends upon factors (such as the current state of the system, the values of certain external504

variables, etc.), which only become known at run-time, and indeed may differ upon different505

invocations of the task. Hence the precise sequence of phases that is to be executed when a task506

is invoked is not known a priori. It is convenient to model such tasks as directed acyclic graphs507

(DAGs) in which the vertices represent execution of straight-line code, and a vertex representing a508

piece of straight-line code ending in a conditional expression has out-degree > 1 – see Figure 1 for509

an example. In this figure the vertex a denotes a piece of straight-line code that ends with the510

execution of a conditional expression. Depending upon the outcome of this execution, the code511

represented by either the vertex b or the vertex c executes, after which the code represented by512

the vertex d is executed. In this section, we briefly explain how our proposed Multi-Phase Secure513

(MPS) workload model may be further extended (i.e., beyond the aspects discussed in Section 4)514

to accommodate recurrent tasks that may include such conditional constructs.515

LITES

42:16 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

5.1 Model516

We now provide a more formal description of the conditional MPS sporadic task model. Each task517

τi is characterized by a 3-tuple (Gi, Di, Ti) where Di and Ti are the relative deadline and period,518

and Gi is a DAG: Gi = (Vi, Ei) with Ei ⊊ Vi × Vi. Each vertex vi,j ∈ Vi represents a phase of519

computation, which must execute using a specified security mechanism. The interpretation of each520

edge (vi,j , vi,k) ∈ E depends upon the outdegree (i.e., the number of outgoing edges) of vertex vi,j :521

1. If this outdegree = 1, then the edge denotes a precedence constraint: vertex vi,k may only522

begin to execute after vertex vi,j has completed execution.523

2. If this outdegree is ≥ 2, then all the outgoing edges from vi,j collectively denote the choices524

available upon the execution of a conditional construct: after vi,j completes execution, exactly525

one of the vertices vi,k for which (vi,j , vi,k) ∈ E becomes eligible to start executing. It is526

not known beforehand which one this may be, and different ones may become eligible upon527

different invocations of the task.528

A WCET function c : Vi → N is specified, with c(vi,j) denoting the WCET of node vi,j ∈ Vi.529

An overhead function q : Vi → N is specified, with q(vi,j) denoting the startup/teardown cost530

associated with the security mechanism using which vertex vi,j is to execute.531

In the original model presented in [8], a simplifying assumption was made that teardown and532

setup costs are always incurred when transitioning between any two jobs, regardless of whether533

they use the same or different security mechanisms. This assumption was conservative, as it534

did not account for cases where both jobs use the same security mechanism, in which case the535

teardown and setup costs would not actually be incurred.536

5.2 A Subtlety537

A subtle issue arises when dealing with conditional code, which was not present in the consideration538

of linear workflows in Section 4. Specifically, during the execution of conditional code, it is not539

known at compile time which branch will be taken at runtime, and different invocations may540

take different paths. In hard real-time systems, it is necessary to ensure that tasks meet their541

deadlines under all possible runtime conditions. Thus, during pre-runtime schedulability analysis,542

a conservative approach is adopted, assuming that each invocation of the task follows the ‘longest’543

path—the one with the maximum cumulative execution requirement.544

Standard algorithms are known for identifying the longest path through a DAG that have run-545

ning time linear in the representation of the DAG. Under limited-preemption scheduling, however,546

identifying the path through the DAG that has maximum cumulative execution requirement is547

not entirely straightforward. Let us consider again the example DAG of Figure 1.548

If the chunk size βi for this task were ≥ 7, then both branches can be executed non-preemptively.549

The upper branch incurs a cost of 5 + 2 = 7 while for the lower branch the cost is 3 + 3 = 6;550

therefore, the upper branch is the computationally more expensive one.551

Now suppose βi = 4. Then the upper branch may need to execute in ⌈5/(4−2)⌉ or 3 contiguous552

pieces, for a cumulative cost of 5 + 3 × 2 = 11. The lower branch may need to execute in553

⌈3/(4− 3)⌉ or 3 contiguous pieces, for a cumulative cost of 3 + 3× 3 = 12, and is hence the554

more expensive branch.555

This example illustrates that the computationally most expensive path through a DAG that556

represents conditional execution depends upon the value of the chunk size parameter (the βi557

parameter of the task). As we saw in Section 4, the approach to scheduling MPS sporadic tasks558

has been to convert each task to a limited-preemption sporadic task. The procedure for doing so559

(Algorithm 1) repeatedly changes the values of the βi parameters of the tasks. As we adapt the560

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:17

techniques of Section 4 to schedulability analysis of conditional MPS tasks, it is important to note561

that the necessary improvements to handle conditional execution, including the correct analysis562

of teardown and setup costs, have already been addressed in a separate extension paper [39]. In563

that work, the unnecessary conservatism in the assumption that teardown and setup costs are564

always incurred during transitions between jobs, regardless of whether they use the same security565

mechanism is eliminated. This refinement leads to a more precise schedulability analysis, ensuring566

that only the relevant overheads are considered and optimizing the overall analysis of conditional567

MPS tasks. Thus, while this paper focuses on the linear task model and its optimization, the568

more accurate treatment of conditional execution is fully covered in [39].569

6 Empirical Evaluation570

In the previous sections, we have developed algorithms to introduce preemptions into the execution571

of the phases of multi-phase secure tasks. While these preemptions reduce the blocking that572

higher-priority phases/jobs experience at runtime, they come at a cost – increased overhead due573

to the additional teardown/startup costs that must be performed before and after every inserted574

preemption. Thus, while the limited-preemption approach proposed in this paper theoretically575

dominates the non-preemptive approach (i.e., each phase is executed non-preemptively and576

preemptions are permitted only between phases of a task), it is unclear how much schedulability577

improvement on average we can expect a system designer to obtain from using our proposed578

approach.579

In this section, we provide an empirical analysis on that topic via the application of the580

schedulability tests of Section 4 over synthetically-generated MPS task systems. We compare the581

proposed schedulability tests with existing limited-preemption scheduling where each phase of a582

task is executed fully non-preemptively.583

By using the refined algorithms presented in this work that permit pseudo-polynomial running584

times for bounded utilization task sets, and correcting implementation issues identified in our585

earlier work [8], we were able to extend our experiments to a broader parameter space and larger586

task sets. We also directly evaluate the running times of our algorithms and implementation, and587

compare them to the original versions from [8].588

As before, we limit our scope to evaluating linear task sequences; we refer readers interested in589

further evaluation, analysis, and refinement of the conditional model to [39].590

6.1 Experimental Setup591

The evaluation was conducted using a C++ simulation. All tests were performed on a a592

server with two Intel Xeon Gold 6130 (Skylake) processors running at 2.1 GHz, and with 64GB of593

memory. Multiple task sets were evaluated in parallel; each task set was given a single thread594

on which to run. We evaluate task sets for many parameter variations, including the task count,595

number of phases per task, utilization, and task periods. In some cases, the number of phases per596

task is fixed; where it is not fixed, we select the number of phases for each task following a uniform597

distribution in the given range. Task periods are selected either from a uniform distribution598

within the period range specified for each test or, where specified below, a log-uniform distribution.599

For each combination of fixed parameters, we generate 1000 random task systems. For each600

system, we use the UUniFast algorithm [15], first to assign a total utilization Ci

Ti
to each task601

and then to distribute the task’s total allotted time Ci between the execution times c(vi,j) and602

startup/teardown overhead q(vi,j
) for each of its phases. We note that compared to the prior work603

in [8] that this paper extends, we have adjusted this distribution to be more consistent and to be604

independent of the number of phases in the task. We then evaluate each task set against three605

LITES

42:18 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

Figure 2 Schedulability ratio of implicit-deadline tasksets with 3 tasks each and periods of 10–30 time
units. On the left, tasks are randomly assigned 1–4 phases; on the right, 1–6.

algorithms: chains, the algorithm presented in section 4, phase NP, in which there is a static606

preemption point between each phase but no additional preemption points can be inserted, and607

fully NP, in which the entire task runs as a single non-preemptive chunk.608

We evaluate both implicit-deadline and constrained-deadline task systems. In an implicit-609

deadline system, Di = Ti for each task. In a constrained-deadline system, we choose a random610

value for each Di that is uniformly distributed between the task’s execution time and its period611

Ti. For implicit-deadline systems, we evaluate U at increments of 0.1 in [0, 1]. We note that,612

compared to the prior version of this work in [8], the improvement to the testing set described613

in Section 4 allows us to evaluate these systems in a reasonable amount of time even for large614

numbers of tasks; to understand the impact of this optimization, we also test the exponential set615

presented in the original version on systems with 8 tasks or fewer and compare their execution616

times. For constrained-deadline systems, the testing set is bounded by a term that is determined617

in part by a factor 1
1−U ; as U → 1, the testing set size becomes very large and becomes infeasible618

to evaluate. We therefore limit our evaluation of constrained-deadline systems to utilizations in619

[0, 0.9].620

6.2 Schedulability Analysis Results621

Schedulability of Implicit-Deadline Systems. Figure 2 shows the schedulability ratio of each622

of the three tests described above — chains, phase NP, and fully NP. For each test, tasks with623

low utilization are all schedulable, but schedulability decreases as the utilization of the system624

increases. By inserting additional preemption points, the chains algorithm is able to obtain a625

schedulability improvement over a phase NP approach on these higher-utilization tasks. Once626

utilization reaches 1, it is not possible to insert any preemption points, as inserting a preemption627

point would increase the startup/teardown overhead and cause the utilization to exceed 1; therefore,628

the chains algorithm does not lead to a schedulability improvement. Tasks with 1-6 phases have a629

slightly higher schedulability ratio than tasks with 1-4 phases; we explore this effect more in the630

paragraph below.631

Figure 3 shows the impact of various parameters of the task system on the schedulability ratio632

using the chains algorithm and periods of 10–30 time units. In Figure 3a, tasks are randomly633

assigned 1-4 phases, while the utilization and tasks per taskset are varied. In Figure 3c, the634

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:19

(a) Implicit deadlines, 1–4 phases. (b) Constrained deadlines, 1–4 phases.

(c) Implicit deadlines, 3 tasks per set. (d) Constrained deadlines, 3 tasks per set.

(e) Implicit deadlines, utilization 0.9. (f) Constrained deadlines, utilization 0.9.

Figure 3 Schedulability ratio of chains algorithm when varying taskset parameters. All tasks have
periods selected uniformly from 10–30 time units.

LITES

42:20 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

Figure 4 Comparison of the effect on schedulability of changing the period range of the generated
tasks. Each set contains 3 implicit-deadline tasks with 1–4 phases.

number of tasks is held constant at 3, and each taskset is assigned a fixed number of phases,635

varying from 2 to 20 phases per task. In Figure 3e, the utilization is held constant at 0.9. As636

in Figure 2, increasing utilization reduces the schedulability ratio. Here, it is clearly visible that637

increasing the number of tasks or number of phases per task improves the schedulability ratio.638

When these parameters are increased, the system’s total execution time is divided among more639

tasks or among more phases, so that each task has a lower blocking time. The reduction in640

blocking time makes the system more likely to be schedulable.641

For completeness, we also evaluate the performance of the algorithm on a wider 1–1000 time642

unit period range, using both a uniform distribution of periods within this range, as well as the643

log-uniform distribution recommended in [22]. Figure 4 shows how the schedulability of these task644

sets compares to the tasksets with 10–30 unit periods. The schedulability of the sets with the645

wider period range is much lower; in particular, tasksets containing a task with a small period are646

less likely to be schedulable. We hypothesize that this is due to these high-frequency tasks having647

less ability to expand their execution time as preemption points are inserted. This trend is also648

apparent in Figure 5; unlike tasks with 10–30 unit periods, increasing the number of tasks increases649

the probability of generating a high-frequency task and therefore causes the schedulability ratio to650

decrease.651

Schedulability of Constrained-Deadline Systems. Figure 6 shows the schedulability ratio652

for each of the three scheduling algorithms on constrained-deadline tasksets, in which all other653

task parameters follow the same configuration as Figure 2. In a constrained-deadline system, the654

chains algorithm is also able to obtain a schedulability improvement over a phase NP approach, by655

inserting additional preemption points to reduce the blocking time. As the tasks in these systems656

have shorter deadlines than the implicit-deadline systems, all three algorithms obtain a lower657

schedulability ratio.658

The right column of Figure 3 shows the effect of varying different taskset parameters for the659

constrained-deadline task sets, which otherwise have the same parameter configurations as the660

implicit-deadline systems. For constrained-deadline tasks, the schedulability ratio is generally661

lower, and the effect of increasing the phase count is smaller. Increasing the number of tasks has662

only a very small effect on the schedulability ratio. We hypothesize that, although increasing the663

task count still tends to reduce the system’s blocking times, it also increases the probability that664

one or more tasks will have a tightly-constrained deadline, which reduces the chance that the665

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:21

(a) Implicit deadlines, 1–4 phases. (b) Implicit deadlines, 3 tasks per set.

(c) Implicit deadlines, utilization 0.9.

Figure 5 Schedulability ratio of chains algorithm when varying taskset parameters. All tasks have
periods selected from 1–1000 time units using a log-uniform distribution.

system will be schedulable.666

6.3 Runtime Performance667

The implementation of the algorithm in our prior work [8] could only evaluate sets of a few tasks668

in a reasonable amount of time. In this work, we rewrite the original Python-based simulation669

using C++, and correct an implementation issue with the original construction of the hyperperiod-670

bounded testing set. These changes lead to significant performance improvements on their own.671

In Figure 7 we randomly generate and test 50 task sets with either 3 or 4 tasks each; the original672

implementation is compared to the rewritten one, which is configured to test points in the full,673

exponentially-sized testing set. For sets of 3 tasks, the median execution time improves by674

approximately 70× and the mean execution time improves by around 250×. For sets of 4 tasks,675

the median improves by around 150× and the mean execution time by more than 3500×. These676

LITES

42:22 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

Figure 6 Comparison of schedulability ratios. Each set has 3 constrained-deadline tasks with periods
selected uniformly from 10–30 time units. On the left, tasks are randomly assigned 1–4 phases; on the
right, 1–6.

3 4
Tasks per taskset

10 5

10 3

10 1

101

103

Ex
ec

ut
io

n
tim

e
pe

r t
as

ks
et

 (s
ec

)

Implementation
Updated
Original

Figure 7 Comparison of the time needed to determine schedulability for task sets with 1-4 phases,
utilization of 0.9, and periods of 10-30. The left side is the rewritten C++ implementation; the right side
is the original implementation from [8]. Note the log scale.

improvements enable testing larger task sets, as shown in the following sections.677

In this work, we also introduce an optimization for implicit-deadline task systems that allows678

us to avoid testing timepoints past Dmax. In Figure 8, we analyze the impact of this optimization.679

Using the full, exponential testing set from the prior work, our implementation is able to test680

tasksets with 6 tasks in only a few seconds, but the time needed still scales exponentially with the681

number of tasks; past eight tasks per set, the analysis once again takes an unreasonable amount682

of time to run. Using the optimization for implicit-deadline systems, evaluating schedulability is683

orders of magnitude faster, and the evaluation times also become more consistent for each taskset.684

This optimization allows us to determine the schedulability ratio for systems of up to 20 tasks,685

the results of which are displayed in Figure 3. As the time needed to determine schedulability686

now scales much more slowly with respect to the number of tasks, we believe that evaluating even687

larger task sets is also possible.688

In Figure 9, we evaluate the performance of determining schedulability of constrained-deadline689

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:23

Figure 8 Time to test schedulability of sets of implicit-
deadline tasks of varying sizes with periods of 10–30 time
units, 1–4 phases, and utilization of 0.9, either testing up to
the hyperperiod or stopping at Dmax. Note the logarithmic
scale.

Figure 9 Time to test schedulability of sets of
constrained-deadline tasks of varying sizes with periods of
10–30 time units, 1–4 phases, and utilization of 0.9, using
the psuedo-polynomial testing set bound from [6]. Note
the logarithmic scale.

Figure 10 Comparison of the sizes of the hyperperiod and pseudo-polynomial testing sets. For each
utilization, we generated 100 sets of 5 constrained-deadline tasks with periods from 10–30, and 1–4 phases.

task sets using the pseudo-polynomial bound on the testing set identified in [6]. Compared to the690

full hyperperiod testing set, running the evaluation with this testing set is much faster. However,691

we note that it is still slower than the optimized implicit-deadline bound from Figure 8. Moreover,692

the distribution of execution times exhibits high variability. Perhaps most importantly, our693

evaluation is on task sets where U = 0.9, at which the pseudo-polynomial bound is still reasonably694

small. As shown in Figure 10, when U → 1, the size of the pseudo-polynomial set approaches the695

hyperperiod set, and it becomes increasingly less feasible to iterate over the entire testing set.696

LITES

42:24 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

7 Related Work697

The trade-off between security and timing constraints in real-time, IoT, and edge computing698

environments is crucial as it involves balancing robust security measures with the need for real-time699

performance. Several studies have explored these trade-offs. For instance, Leonardi et al. [25] and700

Lemieux-Mack et al [24] present mixed-integer linear programming approaches to optimize security701

and schedulability in real-time embedded systems under cyber-attacks. Wang et al. [41] consider702

the trade-off between security and overhead for pointer integrity checks. These papers attempt to703

maximize security without overloading the target system, but do not consider preemption-related704

overhead induced by the startup/teardown costs of the selected security mechanisms.705

Limited-preemption scheduling, surveyed in 2013 by Buttazzo et al. [16], balances the increased706

blocking times of non-preemptive execution with the increased overheads caused by context707

switching. The original models of Baruah and Bertogna minimize context switching by finding the708

longest time each task may execute non-preemptively without compromising schedulability [7, 12],709

but do not account for the worst-case overhead due to the resulting preemptions.710

Later approaches account for both blocking time and preemption overheads by defining711

instants that preemption can occur during task execution (called preemption points) to guarantee712

schedulability. In [13], Bertogna et al. develop an algorithm to find preemption points for tasks713

scheduled with EDF under the assumption that the preemption overhead for each task is constant.714

In contrast, in our MPS task model, individual task phases have unique preemption costs. A715

similar model to that of [13], but for fixed-priority (FP) scheduling, again with constant preemption716

overheads for each task, was developed by Yao et al. in [44].717

In [14], Bertogna et al. model tasks as sequences of “basic blocks,” and present algorithms for718

selecting preemption points between those blocks for both EDF and FP scheduling. Although719

less flexible than the earlier “floating” preemption point models where a preemption point can720

be placed anywhere, that model allows different preemption costs between blocks. The latter721

is similar to the algorithm in [13], but supports domain-specific preemption costs rather than a722

constant overhead per task.723

Other work on limited-preemption scheduling, including cache-aware analysis [31], probabil-724

istic [30] or “typical” execution models [9] are outside the scope of this paper.725

8 Conclusions726

We believe that the concurrent consideration of timing and security properties within a single unified727

framework is an effective means of extending the rigorous approach of real-time scheduling theory728

to guaranteeing appropriately-articulated security properties in resource-constrained embedded729

systems. In real-time scheduling theory, pre run-time verification of timing correctness is performed730

using models of run-time behavior; these models are carefully crafted for specific purposes: e..g,731

the sporadic task model [6] has been designed to represent recurrent processes for which it is safe732

to assume a minimum duration between successive invocations and for which timing correctness is733

defined as the ability to meet all deadlines.734

In this work, as in [8], we have extended the sporadic task model in a security-cognizant735

manner, to deal with a particular kind of security-cognizant workload model. For the specific736

model that we have proposed, we have developed algorithms that are able to provide provable737

correctness of both the timing and the security properties that are considered.738

In this extension to our original work in [8], we have corrected the long-standing condition739

of Baruah and Bertogna [7, 12] for EDF schedulability of limited-preemption tasks. Leveraging740

this, we reduced the execution time complexity of our algorithm, and demonstrated that in an741

implicit-deadline task system, it can run quickly even for large numbers of tasks.742

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:25

We note that the improvements made to the algorithm in this extension also apply to the743

generalization of the model to conditional code that we presented in [8]. In an already-published744

extension to that work [39], we further improve on the conditional execution model by removing745

the assumption that startup/teardown costs are paid at every phase transition and analyze its746

performance.747

The complexity improvements made in this extension, in combination with a more efficient748

implementation of the algorithm, allowed us to evaluate larger and more complex task systems. We749

have also illustrated the scaling properties of the algorithm’s execution time for both constrained-750

and implicit-deadline systems, and shown how its ability to schedule tasks is affected by varying751

their properties. Finally, we have clarified several details of our algorithm and have provided a752

more complete demonstration of the improved schedulability offered by our algorithm over a phase753

or fully non-preemptive approach.754

Although the work described in this manuscript arose out of our related projects in embedded755

systems security, we emphasize that we are not claiming that our algorithms solve any security756

problems; rather, they solve a scheduling problem that may arise from a class of security problems757

for which an adequate protective response gives rise to execution environments with bounded-cost758

startup/teardown operations. As future work, we intend to evaluate these scheduling models in759

conjunction with real-world attack/defense models.760

On the other hand, we believe that our results are relevant beyond just security considerations:761

that they may, in fact, be considered to be further contributions to the real-time scheduling762

theory literature dealing with limited-preemption scheduling. They may also be extended to other763

limited-preemption scheduling frameworks, e.g., for multi-core platforms.764

References
1 OP-TEE. URL: https://www.trustedfirmware.

org/projects/op-tee/.
2 OP-TEE Documentation: Core: Pager. URL:

https://optee.readthedocs.io/en/latest/
architecture/core.html#pager.

3 N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell,
and A. J. Wellings. Fixed priority preemptive
scheduling: An historical perspective. Real-Time
Systems, 8:173–198, 1995.

4 Mohammad Fakhruddin Babar and Monowar
Hasan. Deeptrustˆ rt: Confidential deep neural
inference meets real-time! In 36th Euromicro
Conference on Real-Time Systems (ECRTS 2024).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2024.

5 S. Baruah, R. Howell, and L. Rosier. Algorithms
and complexity concerning the preemptive schedul-
ing of periodic, real-time tasks on one processor.
Real-Time Systems: The International Journal of
Time-Critical Computing, 2:301–324, 1990.

6 S. Baruah, A. Mok, and L. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one
processor. In Proceedings of the 11th Real-Time
Systems Symposium, pages 182–190, Orlando, Flor-
ida, 1990. IEEE Computer Society Press.

7 Sanjoy Baruah. The limited-preemption unipro-
cessor scheduling of sporadic task systems. In
Proceedings of the EuroMicro Conference on Real-
Time Systems, 2005.

8 Sanjoy Baruah, Thidapat Chantem, Nathan
Fisher, and Fatima Raadia. A scheduling model
inspired by security considerations. In 2023 IEEE

26th International Symposium on Real-Time Dis-
tributed Computing (ISORC), pages 32–41, 2023.
doi:10.1109/ISORC58943.2023.00016.

9 Sanjoy Baruah and Nathan Fisher. Choosing
preemption points to minimize typical running
times. In Proceedings of the 27th International
Conference on Real-Time Networks and Systems,
RTNS ’19, page 198–208, New York, NY, USA,
2019. Association for Computing Machinery. doi:
10.1145/3356401.3356407.

10 Sanjoy K. Baruah. Security-cognizant real-time
scheduling. In 25th IEEE International Sym-
posium On Real-Time Distributed Computing,
ISORC 2022, Västerås, Sweden, May 17-18, 2022,
pages 1–9. IEEE, 2022. doi:10.1109/ISORC52572.
2022.9812766.

11 Sanjoy K Baruah, Louis E Rosier, and Rodney R
Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks
on one processor. Real-Time Syst., 2(4):301–324,
November 1990.

12 Marko Bertogna and Sanjoy Baruah. Limited
preemption EDF scheduling of sporadic task sys-
tems. IEEE Transactions on Industrial Informat-
ics, 2010.

13 Marko Bertogna, Giorgio Buttazzo, Mauro
Marinoni, Gang Yao, Francesco Esposito, and
Marco Caccamo. Preemption Points Placement
for Sporadic Task Sets. In 2010 22nd Euromicro
Conference on Real-Time Systems, pages 251–260,
2010. doi:10.1109/ECRTS.2010.9.

LITES

https://www.trustedfirmware.org/projects/op-tee/
https://www.trustedfirmware.org/projects/op-tee/
https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://optee.readthedocs.io/en/latest/architecture/core.html#pager
https://doi.org/10.1109/ISORC58943.2023.00016
https://doi.org/10.1145/3356401.3356407
https://doi.org/10.1145/3356401.3356407
https://doi.org/10.1109/ISORC52572.2022.9812766
https://doi.org/10.1109/ISORC52572.2022.9812766
https://doi.org/10.1109/ECRTS.2010.9

42:26 Limited-Preemption EDF Scheduling for Multi-Phase Secure Tasks

14 Marko Bertogna, Orges Xhani, Mauro Marinoni,
Francesco Esposito, and Giorgio Buttazzo. Op-
timal selection of preemption points to minimize
preemption overhead. In 2011 23rd Euromicro
Conference on Real-Time Systems, pages 217–227.
IEEE, 2011.

15 Enrico Bini and Giorgio C Buttazzo. Measuring
the performance of schedulability tests. Real-Time
Systems, 30(1-2), 2005.

16 Giorgio C Buttazzo, Marko Bertogna, and Gang
Yao. Limited preemptive scheduling for real-time
systems. a survey. IEEE Trans. Industr. Inform.,
9(1):3–15, February 2013.

17 John Cavicchio and Nathan Fisher. Integrating
preemption thresholds with limited preemption
scheduling. In 2020 IEEE 26th International Con-
ference on Embedded and Real-Time Computing
Systems and Applications (RTCSA). IEEE, Au-
gust 2020.

18 Friedrich Eisenbrand and Thomas Rothvoß. EDF-
schedulability of synchronous periodic task sys-
tems is coNP-hard. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms,
January 2010.

19 P. Ekberg and W. Yi. Uniprocessor feasibility
of sporadic tasks remains coNP-complete under
bounded utilization. In 2015 IEEE Real-Time
Systems Symposium, pages 87–95, 2015.

20 P. Ekberg and W. Yi. Uniprocessor feasibility
of sporadic tasks with constrained deadlines is
strongly coNP-complete. In 2015 27th Euromicro
Conference on Real-Time Systems, pages 281–286,
2015.

21 Pontus Ekberg. Models and Complexity Results in
Real-Time Scheduling Theory. PhD thesis, Ph.D.
thesis, Uppsala University, 2015.

22 P. Emberson, R. Stafford, and R.I. Davis. Tech-
niques for the synthesis of multiprocessor tasksets.
In WATERS workshop at the Euromicro Confer-
ence on Real-Time Systems, pages 6–11, July 2010.
1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Sys-
tems ; Conference date: 06-07-2010.

23 K. Jiang, A. Lifa, P. Eles, Z. Peng, and W. Jiang.
Energy-aware design of secure multi-mode real-
time embedded systems with FPGA co-processors.
In Proc. Int. Conf. Real-Time Networks and Sys-
tems, pages 109–118, October 2013.

24 Cailani Lemieux-Mack, Kevin Leach, Ning Zhang,
Sanjoy Baruah, and Bryan C Ward. Optimizing
runtime security in real-time embedded systems.
In Proc. of Workshop on Optimization for Embed-
ded and Real-time Systems (OPERA), December
2024.

25 Sandro Di Leonardi, Federico Aromolo, Pietro
Fara, Gabriele Serra, Daniel Casini, Alessandro
Biondi, and Giorgio Buttazzo. Maximizing
the security level of real-time software while
preserving temporal constraints. IEEE Ac-
cess, 11:35591–35607, 2023. URL: http://dx.
doi.org/10.1109/ACCESS.2023.3264671, doi:10.
1109/access.2023.3264671.

26 M. Lin, L. Xu, L.T. Yang, X. Qin, N. Zheng, Z. Wu,
and M. Qiu. Static security optimization for real-
time systems. IEEE Trans. Industrial Informatics,
5(1):22–37, February 2009.

27 C. Liu and J. Layland. Scheduling algorithms
for multiprogramming in a hard real-time environ-
ment. Journal of the ACM, 20(1):46–61, 1973.

28 Yin Liu, Siddharth Dhar, and Eli Tilevich. Only
pay for what you need: Detecting and removing
unnecessary TEE-based code. Journal of Systems
and Software, 188:111253, 2022. Publisher: El-
sevier.

29 Y. Ma, W. Jiang, N. Sang, and X. Zhang. ARCSM:
A distributed feedback control mechanism for
security-critical real-time system. In Proc. Int.
Symp. Parallel and Distributed Processing with
Applications, pages 379–386, July 2012.

30 Filip Markovic, Jan Carlson, Radu Dobrin, Bjorn
Lisper, and Abhilash Thekkilakattil. Probabil-
istic response time analysis for fixed preemption
point selection. In 2018 IEEE 13th Interna-
tional Symposium on Industrial Embedded Systems
(SIES), pages 1–10, 2018. doi:10.1109/SIES.2018.
8442099.

31 Filip Marković, Jan Carlson, and Radu Dobrin.
Cache-aware response time analysis for real-time
tasks with fixed preemption points. In 2020 IEEE
Real-Time and Embedded Technology and Applic-
ations Symposium (RTAS), pages 30–42, 2020.
doi:10.1109/RTAS48715.2020.00-19.

32 Jonathan M McCune, Bryan J Parno, Adrian Per-
rig, Michael K Reiter, and Hiroshi Isozaki. Flicker:
An execution infrastructure for TCB minimization.
In Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008,
pages 315–328, 2008.

33 Tanmaya Mishra, Thidapat Chantem, and Ryan
Gerdes. Teecheck: Securing intra-vehicular com-
munication using trusted execution. In Proceedings
of the 28th International Conference on Real-Time
Networks and Systems, RTNS 2020, page 128–138,
New York, NY, USA, 2020. Association for Com-
puting Machinery.

34 Sibin Mohan, Man Ki Yoon, Rodolfo Pellizzoni,
and Rakesh Bobba. Real-time systems security
through scheduler constraints. In Proceedings of
the 2014 Agile Conference, AGILE ’14, pages 129–
140, 2014.

35 Anway Mukherjee, Tanmaya Mishra, Thidapat
Chantem, Nathan Fisher, and Ryan Gerdes. Op-
timized trusted execution for hard real-time ap-
plications on cots processors. In Proceedings of the
27th International Conference on Real-Time Net-
works and Systems, RTNS ’19, page 50?60, New
York, NY, USA, 2019. Association for Computing
Machinery. doi:10.1145/3356401.3356419.

36 M. Nasri, T. Chantem, G. Bloom, and R. M.
Gerdes. On the pitfalls and vulnerabilities of
schedule randomization against schedule-based at-
tacks. In 2019 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS),
pages 103–116, April 2019. doi:10.1109/RTAS.
2019.00017.

37 Mitra Nasri, Geoffrey Nelissen, and Gerhard
Fohler. A new approach for limited preemptive
scheduling in systems with preemption overhead.
In 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). IEEE, July 2016.

38 M. Pajic, N. Bezzo, J. Weimer, R. Alur,
R. Mangharam, N. Michael, G.J. Pappas, O. Sokol-

http://dx.doi.org/10.1109/ACCESS.2023.3264671
http://dx.doi.org/10.1109/ACCESS.2023.3264671
https://doi.org/10.1109/access.2023.3264671
https://doi.org/10.1109/access.2023.3264671
https://doi.org/10.1109/SIES.2018.8442099
https://doi.org/10.1109/SIES.2018.8442099
https://doi.org/10.1109/RTAS48715.2020.00-19
https://doi.org/10.1145/3356401.3356419
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1109/RTAS.2019.00017

B. Standaert, F. Raadia, M. Sudvarg, S. Baruah, T. Chantem, N. Fisher, C. Gill 42:27

sky, P. Tabuada, S. Weirich, and I. Lee. Towards
synthesis of platform-aware attack-resilient con-
trol systems. In Proc. Int. Conf. High Confidence
Networked Systems, pages 75–76, April 2013.

39 Fatima Raadia, Nathan Fisher, Thidapat
Chantem, and Sanjoy Baruah. An improved
security-cognizant scheduling model. In 2024
IEEE 27th International Symposium on Real-Time
Distributed Computing (ISORC), pages 1–8. IEEE,
2024.

40 Jinwen Wang, Ao Li, Haoran Li, Chenyang Lu, and
Ning Zhang. Rt-tee: Real-time system availability
for cyber-physical systems using arm trustzone. In
2022 IEEE Symposium on Security and Privacy
(SP), pages 352–369. IEEE, 2022.

41 Yujie Wang, Cailani Lemieux-Mack, Thidapat
Chantem, Sanjoy Baruah, Ning Zhang, and
Bryan C Ward. Partial context-sensitive pointer
integrity for real-time embedded systems. In 2024
IEEE Real-Time Systems Symposium (RTSS),
pages 415–426. IEEE Computer Society, 2024.

42 T. Xie and X. Qin. Scheduling security-critical
real-time applications on clusters. IEEE Trans.
Computers, 55(7):864–879, July 2006.

43 Gang Yao, Giorgio Buttazzo, and Marko Bertogna.
Feasibility analysis under fixed priority scheduling
with fixed preemption points. In 2010 IEEE 16th
International Conference on Embedded and Real-
Time Computing Systems and Applications, pages
71–80, 2010. doi:10.1109/RTCSA.2010.40.

44 Gang Yao, Giorgio Buttazzo, and Marko Bertogna.
Feasibility analysis under fixed priority schedul-
ing with limited preemptions. Real-Time Systems,
47(3):198–223, 2011. Publisher: Springer.

45 M. Yoon, S. Mohan, C. Chen, and L. Sha.
Taskshuffler: A schedule randomization protocol
for obfuscation against timing inference attacks
in real-time systems. In 2016 IEEE Real-Time
and Embedded Technology and Applications Sym-
posium (RTAS), pages 1–12, April 2016.

46 Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and
Lui Sha. Taskshuffler: A schedule randomization
protocol for obfuscation against timing inference
attacks in real-time systems. In 2016 IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS), pages 1–12. IEEE, 2016.

LITES

https://doi.org/10.1109/RTCSA.2010.40

	1 Introduction
	2 Some Real-Time Scheduling Background
	2.1 The Sporadic Task Model BMR90
	2.2 Limited-Preemption Scheduling

	3 The Corrected Limited-Preemption EDF Schedulability Condition
	3.1 The Problem
	3.2 The Correction

	4 Systems of Multi-Phase Secure (MPS) Sporadic Tasks
	4.1 Task Model
	4.2 Overview of Approach
	4.3 The Schedulability Test

	5 Systems of Conditional MPS Sporadic Tasks
	5.1 Model
	5.2 A Subtlety

	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Schedulability Analysis Results
	6.3 Runtime Performance

	7 Related Work
	8 Conclusions

