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Overview

The Advanced Particle-astrophysics Telescope (APT) [1,3] is a space-based mission concept
that will offer all-sky coverage and rapid localization of MeV transients like gamma-ray bursts
(GRBs). Its high-altitude balloon prototype, ADAPT, is under construction and anticipated to fly
from Antarctica in late 2026. A significant challenge for both APT and ADAPT is the strict size,
weight, and power constraints imposed on their computing platforms, together with the
requirement to quickly reconstruct and integrate evidence from multiple Compton scatters of
incoming photons. To localize a burst, the instrument reconstructs the Compton ring described
by each photon's initial scatter. The intersection of these rings then reveal's the GRB's common
source direction. We are developing a computational pipeline that can perform this
reconstruction and localization rapidly and accurately to enable follow-up observations of even
sub-second bursts by narrow field-of-view instruments.

This poster describes our recent work to integrate two neural networks into ADAPT's
computational pipeline to mitigate the effects of noise from the atmospheric background
radiation and enhance localization accuracy. One network is designed to remove background
radiation signals, while the other estimates the uncertainty in the diameter of each
reconstructed Compton ring. Validating the accuracy and computational efficiency of these
networks through simulations of GRB detection for the ADAPT prototype, we find that ADAPT
will be able to localize short GRBs with fluence at least 1 MeV/cm? to within 6° of error at least
68% of the time in under 1 second.

Background

How We Localize GRBs
Gamma-ray photons from a GRB enter the instrument, interacting via one
, or more Compton scatters before being photoabsorbed. As described in [2],
~ GRB localization occurs in two phases:

(1) Reconstructlon [2, 7]
* Infers time ordering of one photon’s interactions w/ detector
* Photon reduces to Compton ring (¢, ¢), where ¢ is vector through first two interactions
and ¢ (also n = cos @) is inferred angle between ¢ and photon’s source direction s
(2) Localization [2]
* Intersects 100s to 1000s of Compton rings to infer common source direction s for GRB
1. Produce rough guess at s by testing likelihood of candidate directions from small
random sample of Compton rings
2. Use iterative least-squares to refine estimate of s until convergence

GRB Model
* Simulated bursts with Band function spectra [8]; a=-0.5, E ea= 490 keV, B =-2.35
* Spectral energiesin [30 keV-30 MeV] to approximately match sensitivity of Fermi GBM [9]
* Burst duration of one second, with time-intensity profile of [5, Sec. 5]
 Generated gamma rays, modeled interactions with detector using GEANT4 [4]

Measuring GRB Localization Accuracy
* Infer source direction from GEANT4-simulated photons from model burst(s)
* Measure angular diff. between true, inferred source directions
* QOver 1000 trials, report 68% (10) and 95% (20) containment values (i.e., 68/95% of trials
vield at most given angular error)

a Neural Networks
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9 Atmospheric Particle Background

Background Particles
In the Earth's upper atmosphere, ADAPT will be exposed to significant anisotropic background
radiation from the Earth's limb [6]

To filter out background events: _15.0 :
(1) Remove all events with two or more interactions 512_5 \ - Eﬁ; E::: ?:::
occurring in the same layer Em o *40 66°
(2) Reject Compton ring lying entirely below s
the horizontal plane c /.3
Need for Networks (right figure) ® 5.0
* Baseline without Neural Networks E 55 l
* The localization significantly improves b )
(1) Without background 0.0 Complete No  Ground Truth

(2) With ground truth dEta Model Background  dEta

9 Localization Performance (ADAPT)

e Tested performance at incident polar § 70+ JJE ﬁ??ﬁi
angles (0°-80°) with 45° azimuthal angles % 60.- +:§ m 222;;

* At 1 MeV/cm:, accuracy within 5-6° 68% of £ 5.
the time for bursts well above the horizon C 40
(<60°) (top right figure) % 301

e For a normal burst, at fluences above 1 X >p.
MeV/cm?, accuracy below 6°, 68% of the § 10- }\_0,,* e ———
time (bottom right figure) ~ 5l

e Fast enough to run end-to-end on an 0 20 40 60 80
embedded device < 1s. Polar Angle Deg

. 68%
* Intel Atom (flight computer on ADAPT):
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TIMING RESULTS ON ATOM.

Localization Error (Deg)
on
o

Stage Mean Time (ms) Range (ms) 40 -
Reconstruction 18.6 15-26
Localization Setup 12.1 12-13 30
DEta NN Inference 5.5 5-6 20
Bkg NN Inference 14.7 14-15 10+
Approx + Refine 18.5 17-21 0-
Total (Max 5 1iter) 220.7 204-246

Fluence (MeV/cm?)

G Quantization and FPGA

Quantization

* PyTorch's Eager Mode Quantization Aware 7 5.
Training (QAT)
'x86' default configuration

* FP32toINTS8

e 68% containment is similar, but the 95%
containment got worse

FPGA implementation

High Level Synthesis tool (Vitis HLS) }\‘_/* —

Pipelined execution of layers

or 597 rings (1 MeV/cm?) ~4 ms , , , ,

compared to 14-15 ms on the Atom 20 40 60

1.75x% the throughput of FP32 on the FPGA Polar Angle (Deg)
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Future Work

* Better Quantization: Test broader quantization strategies for better accuracy at 95%
containment.

* Generalized Networks: Currently only tested for 45° azimuthal. Generalize the networks
to handle all azimuthal angles.

* Full Instrument (APT): Extend the impact of our models on the full APT instrument which
could allow localization of even dim (< 0.1 MeV/cm?) GRBs to within a degree or less
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