
The Advanced Particle-astrophysics Telescope (APT) [1,3] is a space-based mission concept 
that will offer all-sky coverage and rapid localization of MeV transients like gamma-ray bursts 
(GRBs). Its high-altitude balloon prototype, ADAPT, is under construction and anticipated to fly 
from Antarctica in late 2026. A significant challenge for both APT and ADAPT is the strict size, 
weight, and power constraints imposed on their computing platforms, together with the 
requirement to quickly reconstruct and integrate evidence from multiple Compton scatters of 
incoming photons. To localize a burst, the instrument reconstructs the Compton ring described 
by each photon's initial scatter. The intersection of these rings then reveal's the GRB's common 
source direction. We are developing a computational pipeline that can perform this 
reconstruction and localization rapidly and accurately to enable follow-up observations of even 
sub-second bursts by narrow field-of-view instruments.
      This poster describes our recent work to integrate two neural networks into ADAPT's 
computational pipeline to mitigate the effects of noise from the atmospheric background 
radiation and enhance localization accuracy. One network is designed to remove background 
radiation signals, while the other estimates the uncertainty in the diameter of each 
reconstructed Compton ring. Validating the accuracy and computational efficiency of these 
networks through simulations of GRB detection for the ADAPT prototype, we find that ADAPT 
will be able to localize short GRBs with fluence at least 1 MeV/cm2 to within 6° of error at least 
68% of the time in under 1 second.
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Overview

This poster describes our recent work in developing a more realistic model 
for uncertainty in the measured positions and deposited energies of Compton scatters 
in ADAPT informed by simulations and lab measurements of the 
detector instrumentation. We present updated models for propagation of optical light 
in its scintillating CsI:Na tiles, for efficiency of its wavelength shifting fibers, and 
for electronics noise in its edge detectors. Noise is added in simulation to all 
readout channels, allowing us to compare zero-suppression algorithms. We also 
simulate the multiplexing of fibers into readout channels and present initial algorithmic 
techniques for demultiplexing. We update our model of anisotropic background 
radiation in the upper atmosphere and consider its effects on event pileup. We 
additionally consider the implications of communication data rates between the front-
end waveform digitizers and FPGAs, model the effect on triggering holdoff, and 
characterize the tradeoff between longer integration windows and longer holdoff times 
as it impacts GRB localization. Finally, we look at alternative approaches to our back-
end algorithms, including using a neural network to produce an order ranking for 
multiple Compton reconstruction.
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• Signals from multiple events may be captured within the 
same ALPHA readout window.

• Individual gamma-ray photon arrival times sampled from a 
normal distribution in the interval [0,1], std=0.25s

• Events triggered by the anisotropic background radiation 
may also pile up

• Results: Each line in the plots is the average between the two tested azimuth 
angles 0° and 45°. For both instruments, we can localize a typical short GRB well 
under a second on a low-power embedded platform: Raspberry Pi 3B+ device.
(1) For ADAPT, at 1 MeV/cm2, we expect accuracy within 2-3 degrees 68% of the time 
for bursts well above the horizon; at 60° from normal, 68% containment accuracy 
remains within 5 degrees.
(2) For APT, we expect to achieve sub-degree localization accuracy at fluences of 
0.1MeV/cm2 or more and accuracy around one degree at 0.03MeV/cm2.

• Better Quantization: Test broader quantization strategies for better accuracy at 95% 
containment.

• Generalized Networks: Currently only tested for 45° azimuthal. Generalize the networks 
to handle all azimuthal angles.

• Full Instrument (APT): Extend the impact of our models on the full APT instrument which 
could allow localization of even dim (< 0.1 MeV/cm2) GRBs to within a degree or less
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How We Localize GRBs
Gamma-ray photons from a GRB enter the instrument, interacting via one 
or more Compton scatters before being photoabsorbed. As described in [2], 
GRB localization  occurs in two phases:

(1) Reconstruction [2, 7]
• Infers time ordering of one photon’s interactions w/ detector
• Photon reduces to Compton ring (c, 𝜙), where c is vector through first two interactions 

and 𝜙 (also η = cos 𝜙) is inferred angle between c and photon’s source direction s
(2) Localization [2]

• Intersects 100s to 1000s of Compton rings to infer common source direction s for GRB
1. Produce rough guess at s by testing likelihood of candidate directions from small 

random sample of Compton rings
2. Use iterative least-squares to refine estimate of s until convergence

GRB Model
• Simulated bursts with Band function spectra [8]; α=-0.5, Epeak= 490 keV, β =-2.35
• Spectral energies in  [30 keV-30 MeV] to approximately match sensitivity of Fermi GBM [9]
• Burst duration of one second, with time-intensity profile of [5, Sec. 5]
• Generated gamma rays, modeled interactions with detector using GEANT4 [4]

Measuring GRB Localization Accuracy
• Infer source direction from GEANT4-simulated photons from model burst(s)
• Measure angular diff. between true, inferred source directions
• Over 1000 trials, report 68% (1σ) and 95% (2σ) containment values (i.e., 68/95% of trials 

yield at most given angular error)

• Tested performance at incident polar angles (0°-80°) with 
45° azimuthal angles

• New application of a neural network (MLP) motivated 
by [10]. Enhanced our initial estimates of the errors in the 
inferred angle by updating the weights applied to the circles 
in the iterative least-squares refinement stage

• At 1 MeV/cm2, accuracy within 5-6° 68% of the time for 
bursts well above the horizon

• For a 0° polar burst, accuracy less than 5° 68% of the time

Neural Network Approach
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Error in Reconstructed Circles
Originally used an error propagation model by fitting a gaussian experimentally to the 
variations in the spatial and energy measurements respectively.

Using the complete background with pileup can greatly degrade our accuracies, we 
implemented shielding and also tested an initial Neural Network Model (Sec. 6)

• An anticoincidence detector (ACD) to avoid triggering on protons, neutrons, and electrons

• Active bismuth germanate (BGO) Compton-suppression shielding at the bottom

• Source / background Compton ring count: 136 / 26 (w/ shielding) vs 165 /430 (w/o shielding)

     Smart Preamplifier Noise
• RMS noise per ns: 𝜎 = 1.39
• Further scale by signal integration time
• SMART single-PE impulse response 

modeled using 13ns Gaussian followed 
by 27ns exponential

• MC simulation determines mean and 
std for ADC count • 10ns sampling by analog front-end digitizer ASICs

• CsI scintillation modeled as 633 ns exponential distribution
• 1 𝜇s integration for edge detector and WLS fiber signals
• Integration window selected to trade off more optical photon 

capture and less noise (dark count and preamplifier RMS)

SiPM Dark Counts
• Rel. overvoltage ~5%
• Cooled to 10oC
• 70 kHz for single 

3x3 mm SiPM

Signal integration
• CsI scintillation modeled as exponential distribution 

with mean 633 ns
• 1.5 𝜇s integration for edge detectors
• 2.5 𝜇s integration for WLS fibers
• Optical photon signal captured follows binomial 

distribution
• Longer window means more noise (dark count and 

preamplifier) but more photons captured. However, 
due to exponential arrival, you gain less with longer 
integral

          WLS fiber transmission efficiency
• The WLS fiber transmission is fit to the lab measurements 

as an exponential with DC offset
       Edge Detector Modeling
• Optical simulations of ICC layer provide distributions of 

scintillated photons detected by edge SiPMs
• Using the estimated x/y positions localized from the fibers, 

we can convert integrated signal amplitude to energy

               Multiplexing
• Power and weight budget means 3-to-1 passive multiplexing of 

WLS SiPMs into single SMART preamp channel
• Solution: different index of refraction in silicon epoxy at 

tile interfaces causes optical light piping down rows of tiles.
• Position/energy reconstruction is three stage process:
1. Use individual edge detector outputs to guess which of 3 fibers
2. Perform centroiding based on fiber positions
3. Use inferred position to look up signal-to-energy 

conversion from edge detector

Photon absorption positions from 
point-like energy deposit at center.

SMART
Preamp 

ASIC

Atmospheric Particle Background and Pileup

Localization Results
• Background particles (with pileup) heavily influences the 

weighting approach used in iterative least-squares 
approach

Background Particles
In the Earth's upper atmosphere, ADAPT will be exposed to significant anisotropic background 
radiation from the Earth's limb. Current Solution:
(1) Remove all events in which two or more interactions occur in the same layer
(2) Rejects all the Compton ring lies entirely below the horizontal as GRBs can occur only 
above the horizontal plane for ADAPT

SiPM Dark Counts
• Relative overvoltage ~5%
• Cooled to 10oC
• 70 kHz for single 3x3 mm SiPM
• 10 ns samples
• Expected counts/sample:
• 0.0007 for 3x mux WLS
• 0.1512 for 6x36 in edge detector layer

Future Work

Please visit poster #151, “Adaptive Real-
Time Computation for Prompt Localization 

of Transients”

Signal integration

ADAPT consists of 4 ICC layers with light-collecting WLS fibers 
and additionally includes edge detectors and 4 extra layers (tail 
counters) w/o WLS fibers for better calorimetry.

Background Particles
In the Earth's upper atmosphere, ADAPT will be exposed to significant anisotropic background 
radiation from the Earth's limb [6]

Pileup

• Tested performance at incident polar 
angles (0°-80°) with 45° azimuthal angles

• At 1 MeV/cm2, accuracy within 5-6° 68% of 
the time for bursts well above the horizon 
(≤60°) (top right figure)

• For a normal burst, at fluences above 1 
MeV/cm2, accuracy below 6°, 68% of the 
time (bottom right figure)

• Fast enough to run end-to-end on an 
embedded device < 1s.
• Intel Atom (flight computer on ADAPT): 

~220 ms
• Raspberry Pi3: ~840 ms
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Network Architecture [13]
• BatchNorm-FC (fully-connected)-ReLU blocks 

motivated by [10]. 
• Estimated s as input (only polar component)
• Background Network: Classification of 

“background” rings
• dEta Network: Regression of ln(dη) of rings
• Tuned width, depth and shape of blocks 

(yellow region) separately for each network
Model Usage in Pipeline [13]
• Iterative between

1. Traditional Algorithms
• Approximation
• Refinement

2. Neural Networks
• Background Network loops for up to 5 

iterations while dEta Network runs once.

Quantization and FPGA
Quantization
• PyTorch's Eager Mode Quantization Aware 

Training (QAT)
• 'x86' default configuration
• FP32 to INT8 
• 68% containment is similar, but the 95% 

containment got worse
FPGA implementation
• High Level Synthesis tool (Vitis HLS)
• Pipelined execution of layers
• For 597 rings (1 MeV/cm2) ~4 ms 

compared to 14-15 ms on the Atom
• 1.75× the throughput of FP32 on the FPGA

Need for Networks (right figure)
• Baseline without Neural Networks
• The localization significantly improves

(1) Without background
(2) With ground truth dEta

To filter out background events:
(1) Remove all events with two or more interactions 
occurring in the same layer
(2) Reject Compton ring lying entirely below 
the horizontal plane

https://adapt.physics.wustl.edu/
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