Work Already Published: Priority-Based
Concurrency and Shared Resource Access
Mechanisms for Nested Intercomponent Requests in

CAmMKES

Marion Sudvarg*, Zhuoran Sunf, Ao Lit, Chris Gill8, Ning Zhangﬂ,
Department of Computer Science & Engineering
Washington University in St. Louis
St. Louis, Missouri
Email: *msudvarg@wustl.edu, Tzhuoran.sun@wustl.edu, iao@wustl.edu, §cdgill@wustl.edu, ﬂzhang.ning@wustl.edu,

Abstract—Component-based design encapsulates and isolates
state and the operations on it, but timing semantics cross-cut
these boundaries when a real-time task’s control flow spans
multiple components. Under priority-based scheduling, inter-
component control flow should be coupled with priority infor-
mation, so that task execution can be prioritized appropriately
end-to-end. However, the CAmKES component architecture for
the sel.4 microkernel does not adequately support priority prop-
agation across intercomponent requests: component interfaces
are bound to threads that execute at fixed priorities provided
at compile-time in _the component specification. In our work-
already-published [1] we present a new library for CAmKES
with a thread model that supports multiple concurrent requests
to the same component endpoint. Propagation and enforcement of
priority metadata ensures those requests are appropriately prior-
itized. Our library provides implementations of Non-Preemptive
Critical Sections, the Immediate Priority Ceiling Protocol, and
the Priority Inheritance Protocol for components encapsulating
critical sections of exclusive access to a shared resource, and
extends these mechanisms to support nested lock acquisition. We
measure overheads and blocking times of our implementation
and discuss schedulability analysis. The analysis uses a new
hyperbolic bound for rate-monotonic scheduling of tasks with
blocking times that allows tasks to be assigned non-unique
priorities. Evaluations on both Intel x86 and ARM platforms
demonstrate that our library allows CAmKES to provide suitable
end-to-end timing for real-time systems.

I. OVERVIEW

As the complexity of software systems has increased,
component-based software engineering has emerged as a key
approach for providing structure, modularity, and reusability
in system design [2]. Components encapsulate state, com-
putation, and communication, allowing for (1) separation of
functional concerns and (2) isolation of resource utilization
within components to ensure timing and other para-functional
properties, while allowing (3) sophisticated behaviors to be
realized, and (4) desired properties to be enforced locally
and end-to-end, through composition and coordination of

Available as a preprint from |https://www.sudvarg.com/publications/
RTS23_Nested_Locking_ CAmKES.pdf

multiple components. CAmKES, which targets the seL.4 mi-
crokernel [3], provides a description language for the func-
tional requirements of a component-based embedded system,
and for static assignment of para-functional attributes such
as priorities to component threads. Such static assignment,
however, may be problematic in systems where real-time
task execution crosses component boundaries. Under priority-
driven scheduling, tasks are assigned priorities to ensure their
deadlines are met. Tasks and components may be orthogonal:
a task may be decomposed into execution across multiple
components, and a single component may execute on behalf
of multiple tasks. Thus, by assigning priorities to components
rather than to fasks, CAmKES does not fully support priority-
driven scheduling of multi-component tasks.

To address this limitation, in [4] we presented a new
library to enable priority-aware inter-component requests in
CAmKES running atop seL4. The library provides a con-
currency framework that allows multiple concurrent tasks to
execute across shared components, while retaining end-to-
end task prioritization, in only 659 lines of code. It sup-
ports (1) multiple concurrent requests to the same component
procedural interface (CPI) endpoint; (2) priority propagation,
which couples requests with priority metadata and ensures that
each component thread is prioritized according to the task for
which it executes; and (3) implementations of Non-Preemptive
Critical Sections (NPCS), Immediate Priority Ceiling Protocol
(IPCP), and Priority Inheritance Protocol (PIP), for compo-
nents encapsulating exclusive access to a shared resource.

Our work-already-published [1]' extends our prior work
in [4]], introducing mechanisms to support nested lock acqui-
sition via intercomponent requests, including an implemen-
tation of nested PIP. It provides an overview of how to do
schedulability analysis for a component-based task system
specified with our extensions to CAmKES, taking into account
blocking times induced by both library overhead and shared
resource access under our supported protocols. To this end,
in [1, Appendix A], we present a new formulation of the
hyperbolic bound for rate-monotonic scheduling of tasks with

https://www.sudvarg.com/publications/RTS23_Nested_Locking_CAmkES.pdf
https://www.sudvarg.com/publications/RTS23_Nested_Locking_CAmkES.pdf

blocking times, which allows tasks to be assigned non-unique
priorities. The mechanisms our library provides are designed
to be both fast and predictable in execution time; we present
measurements demonstrating that overheads are appropriately
bounded. We also demonstrate, through empirical timing mea-
surements of task sets running on both Intel x86 and ARM
hardware platforms, that our implementation is successful
in meeting end-to-end deadlines for cross-component task
execution in real-time systems.

II. SUMMARY OF RESULTS

In [1f], we evaluate our library using the CAmKES 3.10.0
framework, targeting version 12.1.0 of the seL.4 kernel running
on an Intel x86-64 platform with two Xeon Gold 6130 Skylake
processors running at 2.1 GHz, and on a Raspberry Pi 3 Model
B+ running at 700 MHz.

We individually measure the overheads for both sending
and replying to requests over an endpoint, separately profil-
ing our PIP implementation for requests to a CPI with an
already-acquired lock versus those with an available lock.
We additionally measure the overheads of nested requests
from a CPI implementing PIP to CPIs implementing both
PIP and priority propagation, respectively, reporting both the
call and reply times, as well as the time to send a nested
priority inheritance update. All measurements are listed in [1,
Table 2]. We compare these overheads to that of a request
over the CAmKES built-in seL4RPCCall connector; while our
protocols do induce additional overhead, the maximum values
we measured (a nested call and reply to a CPI with priority
inheritance induced up to about 13,200 cycles of overhead on
Intel and about 9,800 cycles on ARM) equates to less than
6.3 us on Intel and 14.1 ps on ARM, which is suitably low
for task sets running with periods as small as 10 ms.

Furthermore, benchmarked performance numbers for the
seL4 kernel without the CAmKES framework report an average
overhead of 383 and 389 cycles respectively for IPC call and
reply between threads on an Intel x86_64 Skylake platform;
and 404 and 409 cycles respectively on the ARMvS8 platform
in 64-bit mode [5]]. Even with nested priority inheritance, our
mean overheads exceed this by only about 14.4x on the Xeon
Gold 6130 and 7.84x on the Raspberry Pi 3B+. Benchmarked
performance numbers from the related Patina framework [6]
are only available from an ARM Cortex-A9 processor running
on the Zyng-70000 XC7Z020, and as Patina’s seL.4 imple-
mentation is not open-sourced, we cannot perform a direct
comparison. However, their maximum reported overheads for
requests to the mutex service were 11,165 cycles (unlocked)
and 13,918 cycles (locked); more than the maximum observed
overhead on ARM of our mechanisms, even for nested locking
(which Patina does not support).

To facilitate checking the schedulability of actual task sets
running in CAmkKES atop seL4 on our selected hardware
platforms, we generate synthetic task sets over a representative
topology of interacting components (illustrated in Figure [I)),
all running on a single core. In each task set, components
originating tasks t1 and t2 both request a CPI provided by

t1
A
PP [——
t2 C
\ E
3 D —
B —
PIP
t4

Fig. 1. Task and Component Test System

component A, while those originating t3 and t4 both request
a CPI provided by component B. Both A and B encapsulate
exclusive execution using PIP. We evaluate 4 combinations
of assignments of IPCP, priority propagation, and PIP to
components C, D, and E as outlined in [1, Table 3]. For each
configuration, we generate 10 task sets for each utilization
from 0.1 to 1.0, for a total of 400 task sets. Task utilizations
are assigned according to the UUniSort algorithm [7]], with
periods selected from a set of harmonic values from 10 ms
to 1 second. Each task set is run for 10 hyperperiods, with
each task releasing up to 2000 jobs. Given the predictable and
well-bounded nature of the overheads exhibited by our library
on both hardware platforms, no deadlines were missed for any
of our tested task sets.

In summary, our work-already-published [1f] extends our
earlier concurrency framework presented in [4] to support
nested lock acquisition, including nested priority inheritance.
The results of our evaluations demonstrate that our extensions
to the CAmkKES component framework can prioritize cross-
component control flows effectively. Overheads remain low,
and our userspace framework remains easy to integrate into

existing CAmKES-based systems.
Index Terms—real-time systems, component middleware, pri-
ority protocols

REFERENCES

[1] M. Sudvarg, Z. Sun, A. Li, C. Gill, and N. Zhang, “Priority-
based concurrency and shared resource access mechanisms for
nested intercomponent requests in camkes,” Real-Time Systems,
2023. [Online]. Available: https://www.sudvarg.com/publications/RTS23_
Nested_Locking_ CAmKES.pdf

[2] M. D. Mcllroy, “Mass-produced software components,” Software En-
gineering: Report of a conference sponsored by the NATO Science
Committee, Garmisch, Germany, 7-11 Oct 1968, pp. 79-85, Jan 1969.

[3] “The sel4 microkernel,” https://docs.seld.systems/projects/seld/, sel4
Foundation, accessed: 23 Jan, 2022.

[4] M. Sudvarg and C. Gill, “A concurrency framework for priority-aware

intercomponent requests in camkes on sel4,” in 2022 IEEE 28th Interna-

tional Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA), 2022, pp. 1-10.

“sel4 benchmarks,” https://sel4.systems/About/Performance/, seL4 Foun-

dation, accessed: 02 June, 2023.

S. Jero, J. Furgala, R. Pan et al., “Practical principle of least privilege for

secure embedded systems,” in 2027 IEEE 27th Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2021, pp. 1-13.

E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability

tests,” Real-Time Syst., vol. 30, no. 1-2, p. 129-154, May 2005.

[5

—

[6

=

[7

—

https://www.sudvarg.com/publications/RTS23_Nested_Locking_CAmkES.pdf
https://www.sudvarg.com/publications/RTS23_Nested_Locking_CAmkES.pdf
https://docs.sel4.systems/projects/sel4/
https://sel4.systems/About/Performance/

	Overview
	Summary of Results
	References

