
Vol:.(1234567890)

Real-Time Systems (2024) 60:76–107
https://doi.org/10.1007/s11241-024-09419-3

1 3

Priority‑based concurrency and shared resource access
mechanisms for nested intercomponent requests
in CAmkES

Marion Sudvarg1 · Zhuoran Sun1 · Ao Li1 · Chris Gill1 · Ning Zhang1

Accepted: 1 February 2024 / Published online: 15 April 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Component-based design encapsulates and isolates state and the operations on it,
but timing semantics cross-cut these boundaries when a real-time task’s control flow
spans multiple components. Under priority-based scheduling, inter-component con-
trol flow should be coupled with priority information, so that task execution can be
prioritized appropriately end-to-end. However, the CAmkES component architecture
for the seL4 microkernel does not adequately support priority propagation across
intercomponent requests: component interfaces are bound to threads that execute
at fixed priorities provided at compile-time in the component specification. In this
paper, we present a new library for CAmkES with a thread model that supports (1)
multiple concurrent requests to the same component endpoint; (2) propagation and
enforcement of priority metadata, such that those requests are appropriately prior-
itized; (3) implementations of Non-Preemptive Critical Sections, the Immediate Pri-
ority Ceiling Protocol, and the Priority Inheritance Protocol for components encap-
sulating critical sections of exclusive access to a shared resource; and (4) extensions
of these mechanisms to support nested lock acquisition. We measure overheads and
blocking times for these new features, use existing theory to discuss schedulability
analysis, and present a new hyperbolic bound for rate-monotonic scheduling of tasks
with blocking times that allows tasks to be assigned non-unique priorities. Evalu-
ations on both Intel x86 and ARM platforms demonstrate that our library allows
CAmkES to provide suitable end-to-end timing for real-time systems.

Keywords Real-time systems · Component middleware · Priority protocols

1 Introduction

As the complexity of software systems has increased, component-based software
engineering has emerged as a key approach for providing structure, modularity,
and reusability in system design (McIlroy 1969). Components encapsulate state,

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-024-09419-3&domain=pdf

77

1 3

Real-Time Systems (2024) 60:76–107

computation, and communication, allowing for (1) separation of functional concerns
and (2) isolation of resource utilization within components to ensure timing and
other para-functional properties, while allowing (3) sophisticated behaviors to be
realized, and (4) desired properties to be enforced locally and end-to-end, through
composition and coordination of multiple components. To achieve all those benefits
at once, component frameworks tailored for real-time and embedded systems, rang-
ing from the Component-Integrated ACE ORB (CIAO) (Subramonian et al. 2004;
Subramonian et al. 2007) specialization of the CORBA Component Model (CCM)
(CORBA 2001) standard, to the Component Architecture for microkernel-based
Embedded Systems (CAmkES) (Kuz et al. 2007) framework, extend traditional
component models to also consider attributes (e.g. priorities and execution times)
and constraints (e.g. deadlines) for timing and other para-functional properties.

In particular, CAmkES, which targets the seL4 microkernel (seL4 2022), pro-
vides a description language for the functional requirements of a component-based
embedded system, and for static assignment of para-functional attributes such as
priorities to component threads. Such static assignment, however, may be prob-
lematic in systems where real-time task execution crosses component boundaries.
Under priority-driven scheduling, tasks are assigned priorities to ensure their dead-
lines are met. Tasks and components may be orthogonal; a task may be decomposed
into execution across multiple components, and a single component may execute on
behalf of multiple tasks, but by assigning priorities to components rather than to
tasks, CAmkES does not fully support priority-driven scheduling of multi-compo-
nent tasks.

To address this limitation, in Sudvarg and Gill (2022) we presented a new library
to enable priority-aware inter-component requests in CAmkES running atop seL4.
The library provides a concurrency framework that allows multiple concurrent tasks
to execute across shared components, while retaining end-to-end task prioritiza-
tion.1 It supports (1) multiple concurrent requests to the same component proce-
dural interface endpoint; (2) priority propagation, which couples requests with pri-
ority metadata and ensures that each component thread is prioritized according to
the task for which it executes; and (3) implementations of Non-Preemptive Critical
Sections, Immediate Priority Ceiling Protocol, and Priority Inheritance Protocol, for
components encapsulating exclusive access to a shared resource. The concurrency
framework includes new extensions to the CAmkES specification language, allow-
ing users to easily specify the desired real-time behavior of a component. It is imple-
mented entirely in userspace, so it can take advantage of existing formally verified
kernel mechanisms in seL4.

In this paper, we extend our prior work, introducing mechanisms to support
nested lock acquisition via intercomponent requests. The mechanisms our library
provides are designed to be both fast and predictable in execution time. Our proto-
cols use priority semantics to guarantee consistency over lock acquisition without
additional atomic operations. We measure the overhead induced by our protocols,
and validate that it is appropriately bounded. We also provide an overview of how

1 Available from https:// www. sudva rg. com/ prior ity- aware- camkes

https://www.sudvarg.com/priority-aware-camkes

78 Real-Time Systems (2024) 60:76–107

1 3

to do schedulability analysis for a component-based task system specified with our
extensions to CAmkES, taking into account blocking times induced by both library
overhead and shared resource access under our supported protocols. New to this
extension, we present (and prove in Appendix A) a formulation of the hyperbolic
bound for rate-monotonic scheduling of tasks with blocking times, which allows
tasks to be assigned non-unique priorities. We also demonstrate, through empiri-
cal timing measurements of task sets running on both Intel x86 and ARM hardware
platforms, that our implementation, coupled with this analysis, is successful in meet-
ing end-to-end deadlines for cross-component task execution in real-time systems.

The rest of this paper is organized as follows. Section 2 gives relevant background
about the seL4 microkernel and the CAmkES framework, and provides an overview
of related work. Section 3 describes our target task model and existing approaches
for performing response-time and schedulability analysis under this model. Sec-
tion 4 details the design and implementation of our library, and Sect. 5 provides a
brief summary of its usability, integration with CAmkES, and auxiliary tools. Sec-
tion 6 presents (1) measurements on two different hardware platforms of the over-
heads introduced by the protocols supported by our library, (2) empirical evaluations
on those same platforms (in which no deadline misses were observed) of synthetic
task sets with harmonic periods using those protocols, and (3) schedulability analy-
ses which incorporate our measurements of protocol overheads across a broader set
of synthetic task sets; all three of which demonstrate the suitability of our library for
real-time systems. Finally, Sect. 7 concludes the paper, and discusses directions for
future work.

2 Background and related work

CAmkES provides a description language for the functionality of a component-
based embedded system. It is designed to incur minimal execution time and mem-
ory overhead. While addressing these para-functional requirements for overall sys-
tem design, explicit real-time specifications for individual tasks and components
were not a part of the original model. CAmkES has since been extended atop seL4
(2022), allowing for specification of components’ thread priorities statically at com-
pile time (CAmkES 2022). The seL4 microkernel is a widely used, lightweight
OS kernel (seL4 2022; Elphinstone and Heiser 2013) with capability-based access
control to broker all user-level functionality, and its functional specification and
implementation have been formally verified (Klein et al. 2009; Klein et al. 2014).
Additionally, all kernel pathway worst-case execution times have been analyzed and
bounded (Blackham et al. 2011). This makes seL4 well-suited for real-time systems,
and it is a natural target for CAmkES, allowing for separation between components,
while providing efficient IPC channels to handle the explicitly-defined connec-
tions between them. In this work, we extend our contributions presented in Sudvarg
and Gill (2022), providing a framework that expands CAmkES’ support for real-
time task sets executing end-to-end across shared components atop the seL4 ker-
nel. We also show how real-time tasks can be mapped to a component model and

79

1 3

Real-Time Systems (2024) 60:76–107

implemented in CAmkES and seL4 without changes to seL4’s verified codebase or
existing CAmkES software, thus allowing easy adoption.

The Component-Integrated ACE ORB (CIAO) (Subramonian et al. 2004; Sub-
ramonian et al. 2007) extends and specializes the CORBA Component Model
(CORBA 2001) with component QoS specifications provided as additional meta-
data, separate from functional specifications. In both CAmkES and CIAO, RPC
invocations are realized as synchronous IPC between threads in separate com-
ponents, though if components are specified to exist within the same protection
domain, both CAmkES and CIAO can resolve RPCs between them into direct
function calls.

The Patina API (Jero et al. 2021) provides priority-aware synchronization
primitives for shared resource access in seL4. It includes a mutex service that pro-
vides an implementation of the Priority Inheritance Protocol; threads obtaining a
lock must invoke the service via an RPC. Similarly to our approach described
in Sect. 4.2, it enables priority-ordered locking, circumventing seL4’s native
FIFO wait-queue. It also keeps track of which thread holds the mutex so that it
can elevate its priority if a higher-priority thread requests the lock. In contrast,
however, our framework extends the existing CAmkES design to encapsulate all
execution over a shared resource in its own component. This allows access to a
shared resource to be defined at the component level, and each component man-
ages its own priority-based locking protocols with the common framework. This
avoids the need to interpose a separate mutex server component. Additionally,
Patina does not support nested locking; our framework provides mechanisms to
support nested locking over multiple priority-based shared resource access proto-
cols, including the Priority Inheritance Protocol.

The AUTOSAR specification (AUTOSAR 2022; Specification of Operating Sys-
tem 2022) also supports priority-based access to shared resources, assigning a ceil-
ing priority to each mutually-exclusive shared resource, then elevating a task’s pri-
ority to that ceiling when it obtains the resource, thus implementing the Immediate
Priority Ceiling Protocol (Kluge 2009). However, it does not specify native Priority
Inheritance Protocol support, nor does it offer native priority propagation with RPC
calls, both of which are features of our implementation.

An alternative to inter-thread RPC is thread migration between protection
domains, which some OS kernels enable by decoupling a thread’s execution con-
text (e.g. register values, stack, address space, etc.) from its scheduling context (e.g.
priority, resource accounting statistics, temporal reservations, etc.). In the Mach
3.0 kernel, RPC is realized by having the requesting thread immediately continue
executing in the context of the server; a partial context switch is needed to sepa-
rate execution contexts, but the scheduling context maintains continuity across the
call (Ford 1994). A similar, efficient thread migration mechanism was later realized
for inter-component requests in the Composite component-based OS (Parmer 2010).
These approaches let end-to-end task execution retain scheduling semantics across
component boundaries, but do not directly support priority protocols for shared
resource access. A migrating scheduling context must also acquire an execution
context and related resources (e.g. a stack) from the target component’s scope. It
is argued (Wang et al. 2011) that access to the allocated stacks in a component can

80 Real-Time Systems (2024) 60:76–107

1 3

induce priority inversion, unless each component allocates a stack for each thread in
the system. Because CAmkES explicitly defines all intercomponent request paths,
our framework is able to allocate threads (and associated stacks) in a way that avoids
such contention.

Capacity-reserve donation (Credo) (Steinberg et al. 2005), implemented in the
original L4 microkernel (Liedtke 1993), uses scheduling context migration to propa-
gate priorities with intercomponent requests, while also supporting shared resource
access protocols (in particular, the Priority Inheritance Protocol (Sha et al. 1990)
and the Immediate Priority Ceiling Protocol (Buttazzo 2011; Baker 1991). A similar
approach (Steinberg et al. 2010) was later implemented to support the Priority Inher-
itance Protocol and bandwidth inheritance (Lipari et al. 2004) in the NOVA micro-
hypervisor (Steinberg and Kauer 2010). These approaches, unlike ours, require the
kernel to track the full migration path of the scheduling context. In contrast, ours is
a userspace framework that allows coordinated control over the implemented proto-
cols. Request messages are coupled with a priority parameter and a unique identifier
for the originating task, allowing each component to manage and track its incoming
and outgoing requests. Runtime traversal of request chains for nested priority inher-
itance is managed via message passing among cooperative components. This allows
RPC to be realized as synchronous IPC using a thread model that enables immediate
request-passing where appropriate, while appropriately blocking on access to locked
resources.

3 System model

3.1 Task and component model

In this work, we target an implicit-deadline, sporadic task system, using fixed-prior-
ity, preemptive scheduling on a uniprocessor. Our system is composed of a set Γ of n
tasks

{
�i =

(
Ci, Ti, pi

)}
 characterized by a worst-case execution time Ci and a mini-

mum interarrival time Ti , and assigned a priority pi . We assume, for schedulability
considerations, that task execution is nonblocking (except when waiting for a lock
held by another task). In other words, jobs do not self-suspend except on completion.

Our target OS platform is the seL4 microkernel (seL4 2022), which supports
fixed-priority preemptive scheduling. The seL4 kernel, compiled with default set-
tings, schedules threads of the same priority in round-robin fashion; in this work we
instead consider a version in which the round-robin timeslice is set large enough that
threads will always run to completion unless preempted by a strictly higher priority
thread. In Sects. 4 and 6 respectively, we describe our implementation and evalua-
tion of this version.

We define a mapping from our task system Γ to originating components and sets
of component procedure interfaces (CPIs), described in CAmkES, as follows. First,
for each task �i ∈ Γ , we define a component ci that we say originates the task. In
CAmkES, that component is specified as active (using the control directive), giving
it an associated thread to run the task. The thread is assigned (via a CAmkES attrib-
ute) the priority pi of the task. Common functionality or resources, shared among

81

1 3

Real-Time Systems (2024) 60:76–107

multiple tasks, may be encapsulated behind CPIs within other components.2 Each
such task �i is thus decomposed into multiple subtasks: an initial subtask execut-
ing in its originating component ci , with control flow then passing out of it to zero
or more shared CPIs, then returning back through the request chain before finally
completing execution in ci , as illustrated in Fig. 1. Requests can be nested: CPIs may
send requests to other shared CPIs. Further, a request chain may branch: a CPI or the
component originating a task may make subsequent requests to multiple other CPIs,
or even multiple requests to the same CPI, within the control flow of a single job.

Components hosting one or more shared CPIs are realized in CAmkES by defin-
ing them as passive (lacking the control directive). Explicit connections—from an
originating component or CPI that uses it, to the CPI—must be defined in CAm-
kES. Connections are backed by an underlying endpoint, an seL4 kernel object that
enables RPC calls between threads through synchronous IPC, where the request-
ing thread blocks until it receives a reply.3 Endpoints, being synchronous, require
a sending and receiving thread to rendezvous. Thus, task execution will be blocked
at the transition between subtasks if no threads in the target CPI are waiting on the
endpoint.

CAmkES components, using the built-in connector types, establish CPIs as end-
points with a single listening thread that handles all requests; its priority is specified
as an attribute of the CAmkES configuration. This presents fundamental incompat-
ibilities with our task model: multiple tasks executing end-to-end across shared CPIs
are not guaranteed to execute subtasks according to the priority of the task, and may
be blocked from progress if a procedure on its request path is already executing, even
if that execution is for a request from a task of lower priority. The framework we
provide addresses these problems, providing appropriate priority propagation across

Fig. 1 Tasks
{
�1, �2, �3

}

originate in active components
{1, 2, 3} respectively. Compo-
nents 1 and 2 share common
functionality, realized through
a request to the same CPI in
component A which itself sends
a request to a CPI in B. Com-
ponent 3 sends a request to a
CPI in C, then to one in D. This
defines a decomposition of each
task into subtasks

3 Another version of this is also possible, where a request is sent asynchronously to an event interface, in
which case no reply is necessary, and control need not return to the requesting active component or CPI.
We defer consideration of this alternative to future work.

2 Our system model does not allow an originating component to specify any CPIs since it is by definition
the root of all request chains emanating from it.

82 Real-Time Systems (2024) 60:76–107

1 3

CPIs that encapsulate shared functionality and mechanisms for additional resource
access protocols for CPIs encapsulating exclusive access to shared resources.

3.2 Resource access protocols and schedulability

To analyze schedulability of our end-to-end task model, we consider several
possibilities under the system model we have described. For each of them, we
describe how the existing theory for rate-monotonic scheduling, including block-
ing time analysis for shared resource access protocols, applies to our model.

3.2.1 Priority propagation

In Sect. 4.3 we describe our framework’s mechanisms to support priority propa-
gation—whereby threads belonging to CPIs encapsulating shared functionality
execute at the priority of the requesting task, and can preempt execution to handle
requests of higher priority—allowing the component execution model to match
our priority-based task model presented above. However, overhead induced by
the protocol introduces a brief blocking time during the transition, as if the task
holds a lock according to the Immediate Priority Ceiling Protocol (IPCP). Under
IPCP, a task may be blocked, at most, for the duration of a single critical section
(Buttazzo 2011). This allows us to compute blocking times, and hence perform
schedulability analysis, for a task system (mapped to originating components and
CPIs as we describe next) using priority propagation.

We say that task �i originates in active component ci and additionally exe-
cutes across a set of CPIs (hosted by passive components) ĉi (of size ‖ĉi‖). The
worst-case overhead for sending a request with a propagated priority to a CPI is
denoted Cprop_send , and for replying is Cprop_reply , with worst case total overhead
Cprop = Cprop_send + Cprop_reply (measured in Sect. 6). For a CPI c, we denote the
worst-case procedure execution time as C(c). Thus, a task �i has total WCET:

Each CPI c has a minimum priority pmin(c) among tasks for which it executes, and
a maximum priority pmax(c) . The blocking time Bi induced on a task �i is there-
fore max(Cprop_send,Cprop_reply) if there exists a CPI c for which pmin(c) < pi and
pi ≤ pmax(c) ; otherwise, the CPI experiences no blocking time. Schedulability anal-
ysis of task sets where each task has a unique priority then can be performed using
the Hyperbolic Bound with blocking factors (Bini et al. 2003):

A more pessimistic bound, though one that applies to a task system Γ (∣Γ∣ = n)
where multiple tasks may have the same priority, is presented in Sha et al. (1990)

(1)Ci = C(ci) +
�

c∈ĉi

C(c) + ‖ĉi‖ ⋅ Cprop

(2)∀𝜏i ∈ Γ,
∏

𝜏j∶pj>pi

(
Cj

Tj
+ 1

)(
Ci + Bi

Ti
+ 1

)
≤ 2

83

1 3

Real-Time Systems (2024) 60:76–107

(Corollary 17), as a generalization of the rate-monotonic utilization bound in Liu
and Layland (1973):

In theory, for RM schedulability analysis of task sets where some tasks have equal
periods, these tasks can be assigned unique priorities in some arbitrary order. In
practice, however, tasks of equal periods are often assigned equal priorities. Sys-
tems are typically limited to a fixed number of priority levels (one version of our
implementation is limited to 128 priorities, as described in Sect. 4.2); the pigeon-
hole principle dictates that for large enough task sets, some tasks cannot have unique
priorities. Further, assigning unique priorities to tasks of equal periods involves a
decision about the ordering which may have undesirable implications (e.g., a task
might be preempted by another task with the same period, resulting in an undesir-
able increase in context switching). To address these issues, we provide the follow-
ing schedulability condition (which we prove in Appendix A) for task sets with non-
unique priorities and blocking times:

3.2.2 Immediate priority ceiling protocol

Our framework allows a CPI to encapsulate execution of a critical section with the
Immediate Priority Ceiling Protocol (IPCP). Such CPIs have a worst-case request
overhead time Cfix = Cfix_send + Cfix_reply . We introduce a new term, B(c), for the
worst-case blocking time that a CPI c can induce. For a CPI c to which priorities
are propagated, B(c) = max(Cprop_send,Cprop_reply) as before. For a CPI c having a
fixed priority, e.g. one using IPCP, blocking time must be computed recursively as
the sum of its execution time and protocol overhead (Cfix + C(c)), plus the execu-
tion times and protocol overheads for all CPIs to which it makes requests. Now,
the blocking time Bi induced on task �i is the maximum worst-case blocking time
induced by any CPI:

IPCP is an improved version of Non-Preemptive Critical Sections (NPCS), which
assigns the maximum system priority to execution in all critical sections. Under
NPCS, then, the blocking time induced by any CPI becomes:

Task WCETs must account for the different overheads, Cp and Cf , induced by
requests to CPIs that propagate priorities and have fixed priorities, respectively. We

(3)
∑

�i

Ci

Ti
+max

�i

{
Bi

Ti

}
≤ n

(
21∕n − 1

)

(4)∀�i ∈ Γ,
∏

�j∶pj≥pi,j≠i

(
Cj

Tj
+ 1

)(
Ci + Bi

Ti
+ 1

)
≤ 2

(5)Bi = max
c

{
B(c) ∣ pmin(c) < pi ≤ pmax(c)

}

(6)Bi = max
c

{
B(c) ∣ pmin(c) < pi

}

84 Real-Time Systems (2024) 60:76–107

1 3

say that a task �i executes across a set of fixed-priority CPIs ĉi,f and a set of CPIs that
propagate priority ĉi,p . This results in a new equation for task WCET, slightly modi-
fied from Eq. 1:

Schedulability analysis, using Eqs. 3 or 4, can be performed using these new block-
ing times and WCETs.

3.2.3 Priority inheritance protocol

Our framework also supports CPIs that use the Priority Inheritance Protocol (PIP),
as described in Sect. 4.2. As we show in Sect. 6.1, our mechanism induces protocol
overhead that depends on whether the lock is already acquired, and if so, on the
number of tasks that execute on the CPI. For such a CPI c, we denote this Ci(c).

Because a task can be blocked for the duration of multiple critical sections
under PIP, CPIs implementing PIP may induce longer worst-case blocking times
than those using IPCP (Sha et al. 1990). However, under PIP, higher-priority tasks
may preempt lock-holders in situations where this preemption could not happen
under IPCP, which may make PIP attractive, especially for some soft real-time
applications.

In Sudvarg and Gill (2022), which this paper extends, our implementation
restricted the nesting of CPIs such that a CPI implementing PIP could only send
requests to CPIs with a fixed priority ceiling, i.e., IPCP or NPCS. In this paper, we
extend the mechanisms to allow for nested priority inheritance: if a thread in a CPI
implementing PIP is blocked on a nested request, and it inherits a higher priority
from a new request to its CPI, it will propagate the inherited priority to the CPI
handling the nested request. As described in Sect. 4.2, this propagation requires a
sequence of updates across the request chain. Each update induces an overhead of
Cup , for a total of l(c)⋅Cup , where l(c) is the length of the longest request chain rooted
at CPI c. Thus, the worst-case overhead Ci(c) can be computed as:

Here, Cunlocked
i

 denotes the overhead of the protocol when the lock is available, Clocked
i

denotes the overhead when the lock is acquired and no additional tasks are waiting
on the lock, and Clocked

i
(c) denotes the additional worst-case overhead induced by the

CPI’s Notification Manager priority queue (described in Sect. 4.2) when full.

(7)Ci = C(ci) +
�

c∈ĉi

C(c) + ‖ĉi,p‖ ⋅ Cprop + ‖ĉi,f‖ ⋅ Cfix

(8)Ci(c) = max
{
Cunlocked
i

, Clocked
i

+ Clocked
i

(c) + l(c)⋅Cup

}

85

1 3

Real-Time Systems (2024) 60:76–107

4 Design and implementation

The CAmkES framework (CAmkES 2022) provides a specification language to
describe a system as a collection of components and connections between them.
CAmkES generates the necessary seL4 system calls to create components and IPC
described by a user-provided system specification and component source code, then
compiles everything into an Executable and Linkable Format (ELF) binary pack-
aged with an seL4 kernel image.

Our goal in this work, as in our prior work (Sudvarg and Gill 2022) that it
extends, is to elaborate on the CAmkES framework without changes to its underly-
ing parser or to the seL4 kernel. The design and implementation of our approach
provides priority propagation across thread-safe, reentrant components executing
similarly to sequential, non-componentized versions. We also support several pri-
ority-based locking protocols—including the Immediate Priority Ceiling Protocol
(IPCP), Non-preemptive critical sections (NPCS), and Priority inheritance protocol
(PIP)—to provide synchronization over component-encapsulated shared state. Com-
ponent execution is replicated across subtasks and control flows, with multiple sub-
tasks in a single component, so that functionality itself need not be replicated. Each
component provides spatial isolation via its own separate address space, which is
shared among its threads’ unique stacks.

4.1 Shared resource access protocols

CPIs that encapsulate exclusive access to a shared resource must provide appropri-
ate priority semantics for the associated critical section. We assume that each such
CPI encapsulates a complete critical section. Encapsulation of a shared resource for
which only a portion of execution must be locked can be realized with one or more
CPIs propagating priority for reentrant access to the resource, and other CPIs encap-
sulating locking semantics for nonreentrant, exclusive access.

Nested locking (acquiring a second lock while already holding a lock) then can
be achieved through a chain of requests: a CPI encapsulating one lock can make a
request to another CPI encapsulating the second lock. This is illustrated in Fig. 2.

Fig. 2 Active components 1 and 2 send requests to a CPI for Reentrant Execution that is provided by a
passive Resource Component, which also provides and uses CPIs for exclusive execution protected by
Lock A, and nested locking by Lock B. Lock acquisition ordering is enforced by the defined connections;
an acyclic connection digraph is deadlock free

86 Real-Time Systems (2024) 60:76–107

1 3

It is straightforward to implement the Non-Preemptive Critical Sections Protocol
(NPCS) and the Immediate Priority Ceiling Protocol (IPCP). Both are achieved in
our framework by tagging an interface with the “fixed” priority protocol attribute (as
described in Sect. 5) and providing a single listening thread to its endpoint, assign-
ing the thread a fixed priority. This wraps the free implementation of these protocols
that is provided by both the MCS and non-MCS builds of the seL4 kernel (Lyons
et al. 2018).4 Under either protocol, if the CPI’s procedure performs a nested request
to another downstream CPI, the priority of the thread, not the originating task, must
be passed with the request message. This was omitted from our prior work in Sud-
varg and Gill (2022), and has been added in this extension.

The NPCS is realized under traditional, fixed-priority, preemptive scheduling
by assigning a CPI the maximum system priority (255 in seL4). Once a request is
received by the interface, it cannot be preempted. Under round-robin scheduling of
threads having equal priorities, NPCS comes with the additional constraint that all
tasks (and their originating components’ threads) are restricted to priorities less than
the maximum (i.e. 0-254 in seL4). This guarantees that execution in a critical sec-
tion is not preempted by a new request, which implies that two critical sections can-
not execute concurrently: one critical section would necessarily have to begin execu-
tion before the other, and for the second critical section to execute, it would have
to be in response to a request preempting the first. Otherwise, if another task has
priority 255, round-robin scheduling could allow preemption of the non-preemptive
section.

Because NPCS induces blocking time on all tasks in a system, the IPCP is typi-
cally preferred as an alternative fixed-priority resource access protocol. As noted in
Lyons et al. (2018), IPCP is straightforward to implement by providing an endpoint
with a single thread, assigned a priority equal to the priority ceiling of the CPI. With
only a single thread listening on the endpoint, no additional lock variable is neces-
sary. IPCP is, as defined in Buttazzo (2011), a deadlock avoidant protocol. However,
under seL4’s priority-based round-robin scheduler, deadlocks can occur. Consider
a task, �1 , that acquires some lock A, then lock B while still holding A (lock acqui-
sition is nested). Another task, �2 , acquires lock B, then lock A. If �1 and �2 have
priorities equal to the priority ceiling and �1 acquires A, it may be switched out for
�2 , which could then acquire B and proceed to wait on lock A. At this point, �1 is
switched back in, and attempts to obtain lock B, causing deadlock.

One solution to this is to assign “fixed” CPIs a priority equal to PC+1. How-
ever, under our component model, deadlock could still occur, even without round-
robin scheduling. The possibility of deadlock requires execution paths that acquire
locks in opposite orders. This would imply two CPIs, each encapsulating a lock, that
each have connections to the other’s interface. Given misconfigured CPIs, one might

4 We did not enable MCS features when building the kernel. Budget depletion during execution in a
CPI encapsulating nonreentrant critical sections can starve higher-priority requests, as noted in Jero
et al. (2021). Further, the seL4 sporadic server implementation induces budget fragmentation even when
threads are preempted by others of higher priority (Lyons et al., 2018); the standard sporadic server
should only schedule a replenishment when a thread voluntarily yields the processor (Sprunt, 1990;
Stanovich et al., 2010).

87

1 3

Real-Time Systems (2024) 60:76–107

request the other, which could request the first in turn, causing deadlock within a
single task’s control flow. To guarantee the absence of deadlock one would have to
ensure that no cycles exist in the digraph of connections. New to this extension, we
provide a tool to parse and detect cycles in a provided system specification, which
alerts to possible deadlock.

We do not implement the original Priority Ceiling Protocol, as described in Sha
et al. (1990). The Immediate Priority Ceiling Protocol assigns static priorities to
component interfaces according to the priority ceiling of the corresponding lock.
Because connections are defined statically in the CAmkES specification, the prior-
ity ceiling can be computed offline using our parser. However, the original Prior-
ity Ceiling Protocol requires the tracking of a priority ceiling among all currently
acquired locks; because this introduces additional online global state even among
non-interacting components, we do not provide this protocol as an option.

4.2 Priority inheritance protocol

An interface will provide locking with Priority Inheritance Protocol semantics
if tagged with the “inherited” priority protocol attribute. For these interfaces, our
framework supplies the CPI with five variables: a boolean lock variable (which,
as we will explain, need not be accessed using atomic operations), a pointer to
the thread holding the lock (implemented as an seL4_CPtr to its Thread Con-
trol Block), the current inherited priority of that thread, a unique identifier corre-
sponding to the task for which the component is currently executing, and a function
pointer that facilitates nested priority inheritance.

To allow for priority inheritance, these CPIs must (1) execute a request at the pri-
ority of the requesting thread, and (2) handle concurrent requests, allowing tempo-
rary preemption to enable the lock holder to inherit any higher priorities associated
with these requests. To achieve these goals, we give each CPI a pool of threads, all
waiting for requests on the underlying endpoint. To ensure thread availability when-
ever a request arrives, the size of the pool is set equal to the number of possible con-
current requests, as illustrated in Fig. 3. Because CAmkES provides a static speci-
fication of CPIs and request connections, this value is straightforward to determine.

The threads belong to the same CPI and share an address space, so they all have
access to the CPI-scoped variables used by the protocol mechanisms. Threads wait
on the endpoint at the highest priority among all tasks that use the interface, referred

Fig. 3 Passive component A’s CPI is used by active components 1 and 2 so a pool of 2 threads waits on
the underlying endpoint. Passive component B’s CPI is used by both of component A’s CPI threads and
by active component 3, so it has 3 threads for 3 tasks

88 Real-Time Systems (2024) 60:76–107

1 3

to as its priority ceiling (PC). This ensures that if a request preempts existing execu-
tion in the CPI on behalf of another request through the interface, the thread han-
dling the new request will be of sufficiently high priority to begin execution.

Our implementation of Priority Inheritance Protocol is illustrated in Fig. 4. When
a request arrives, the responding thread 1 checks the lock. If the lock is already
held (State Locked), it proceeds to 2 check the inherited priority variable against
the priority of the requesting thread, which is passed to it over the endpoint as part
of the request message.5 If the request priority is higher, it is inherited by the thread
currently holding the lock: the responding thread 3 updates the inherited priority
variable, then 4 elevates the priority of the locking thread’s Thread Control Block
(TCB) with a call to seL4_TCB_SetPriority. If the locking thread is cur-
rently blocked on a downstream request, a corresponding pointer 5 will have been
set to a function that facilitates propagating the inherited priority to the requested
CPI (described below); the responding thread calls this function. At this point, it 6
waits for a signal indicating that the lock has been freed.

If, however, the lock is unlocked (State Unlocked), 9 the thread marks the lock
as locked, 10 sets the inherited priority variable to the request priority, 11 sets
the TCB pointer to itself, and 12 registers the unique identifier of the originating

Fig. 4 Implementation of Priority Inheritance Protocol

5 In CAmkES, procedure interfaces are declared similarly to C-style functions: they may include one or
more parameters, which specify the set of arguments that must be passed as part of the IPC message data.

89

1 3

Real-Time Systems (2024) 60:76–107

task (passed as part of the request message). It then 13 demotes its priority to the
request priority and 14 runs the interface’s procedure code to handle the request.
Once complete (State Finished), it 21 promotes itself back to the priority ceiling,
22 marks the lock as unlocked, 23 signals any threads waiting for the lock, then
finally 24 replies to the requestor and returns to waiting on the endpoint.

The seL4 kernel provides notification objects, which are simple signaling mecha-
nisms that support blocked waiting. When a notification object receives a signal, a
single waiting thread (if there are any) is awakened. If the seL4 kernel is compiled
with default settings, it wakes waiting threads in FIFO order. Notification objects are
priority aware when compiled with MCS settings; in this case, waiting threads are
tracked in a priority-ordered linked list (Mergendahl et al. 2022). In either case, it is
unsuitable to provide a single notification object upon which all threads requesting
a held lock must wait. Threads wait at the priority ceiling of the interface, but the
thread handling the request with the highest priority must be guaranteed to be the
first to obtain the lock when it becomes available. As such, we implement a request-
priority-aware signaling mechanism that we call a notification manager.

The notification manager contains a priority queue (implemented as a max-heap)
of notification objects, sorted by priority. Because a max-heap does not maintain a
stable sort, we additionally track the insertion order of all objects into the priority
queue6; two objects of equal priority are sorted so that the first object inserted is
higher in the heap’s ordering. When initialized, the notification manager creates an
array of notification objects, equal to the size of the thread pool, by using the CAm-
kES seL4 object allocator. The notification manager reveals two public functions,
wait and signal, similar to the seL4 system calls of the same names for notification
objects. A pointer to the request priority and the unique identifier of the task origi-
nating the request are passed with the wait call, allowing the notification manager
to retrieve a notification object from the free list, then insert it into the heap. The
wait function then uses a system call to wait on that notification object. The notifica-
tion manager’s signal function signals the notification object at the head of the heap
(State Wake). The awakened thread 7 returns from the seL4 wait system call; its
control flow remains in the notification manager’s wait function, which 8 pops its
notification object from the head of the priority queue. At this point, the thread 9
proceeds as if it had found the lock available.

If a nested request to a downstream CPI is performed as part of the interface’s
procedure code (State Request), our implementation of the protocol wraps the
request so that the thread 15 elevates its priority to the PC, 16 sets the request pri-
ority to the current inherited priority, 17 sets the function pointer to facilitate down-
stream nested inheritance, then 18 sends the request. On receiving a reply, it 19
clears the function pointer, then 20 demotes its priority back to its current inherited
priority. This avoids possible data races associated with a higher priority request
arriving when the pointer is in an inconsistent state (i.e., when the lock-holder has

6 The insert order increments with every insertion into the priority queue. It is is implemented as a
64-bit unsigned integer to avoid overflow.

90 Real-Time Systems (2024) 60:76–107

1 3

set the pointer but hasn’t yet made the request, or when the lock-holder has received
a reply but hasn’t yet cleared the pointer).

To enable nested priority inheritance, any CPI in a nested request chain down-
stream of a CPI implementing PIP (except those with a fixed priority ceiling, i.e.,
IPCP or NPCS) provides an additional method, nest, to receive inherited prior-
ity updates from upstream components. When sending a request to the CPI, an
upstream component 17 sets a function pointer to the corresponding nest method;
this allows new incoming requests with higher priorities to 5 perform nested propa-
gation of the inherited priority, passing the new priority and the identifier of the
thread waiting on the request to the downstream CPI. In a CPI implementing PIP,
the nest method 25 checks if the corresponding requestor currently holds the
lock. If not, it finds the requestor’s node in the notification manager, elevates its pri-
ority, then recursively swaps the node with its parents until the max-heap property
is satisfied. The method then performs steps 2 – 5 as necessary to elevate the pri-
ority of the lock holder and propagate the inherited priority to further downstream
requests. Note that CPIs providing the nest method require an additional thread.

In the absence of round-robin scheduling of threads at the same priority, all exe-
cution of our protocol (steps 1 – 13 , 16 – 20 , and 22 – 25 in Fig. 4) occurs at the
priority ceiling, and so cannot be preempted by new requests. The only time that
execution can be preempted by a request is when the thread is executing the CPI
procedure (steps 14 – 15 and 21). If preempted here, it will remain preempted
while the responding thread executes steps 1 – 5 for the primary method or steps
25 and 2 – 5 for the nest method. Thus, there can only be two threads from the
pool active at any given time: either when there is one thread executing (steps 14
– 15 or 21) and one at the priority ceiling (steps 1 – 5 or 25), or when the thread
holding the lock signals the notification manager, waking another thread. In the lat-
ter case, the signaled thread will proceed through steps 7 – 9 , while the signaling
thread proceeds to 24 . As both threads are executing at the priority ceiling, no new
requests can arrive, and so the thread just awakened will be guaranteed that when it
pops the head of the heap, it will have its own notification object, and that the lock
will not be acquired by another thread before it proceeds to set the lock. Thus, by
priority semantics, our protocol is race-free.

However, under round-robin scheduling of same-priority threads, a race may
occur: a responding thread running the mechanisms of our protocol can be swapped
out for a requestor at the priority ceiling, which would wake another thread from the
pool. In our prior work, we addressed this problem in the absence of nested locking
(Sudvarg and Gill 2022), but these same arguments do not apply to our implementa-
tion of nested Priority Inheritance Protocol. We therefore implement and evaluate
our protocols in the context of traditional fixed-priority preemptive scheduling, and
defer consideration of round-robin scheduling to future work.

91

1 3

Real-Time Systems (2024) 60:76–107

4.3 Priority propagation

We also support CPIs that encapsulate reentrant functionality shared among multi-
ple tasks. So that end-to-end task execution follows the semantics of fixed-priority,
preemptive scheduling as described in Sect. 3, we require that task priority propa-
gates with control flow across request paths. Such a CPI, having an interface tagged
with the “propagated” priority protocol attribute, must (1) execute requests at the
priority of the requesting thread, and (2) handle concurrent requests in a preemp-
tive fashion, i.e. a CPI may preempt its own procedure’s execution if it receives a
request from a higher priority task. Similarly to PIP, these CPIs are again supplied
with a pool of threads, the size of which is equal to the number of possible concur-
rent requests. Under traditional fixed-priority preemptive scheduling, these threads
are set to wait on the endpoint at the priority ceiling.

Our implementation of Priority Propagation is illustrated in Fig. 5. When a
request arrives, the thread handling the request 1 retrieves a node from a Thread
Manager, a data structure that allows the CPI to track requests and associated priori-
ties. The Thread Manager maintains two singly-linked lists to track free and in-use
nodes. After retrieving a free node (State Executing) and adding it to the in-use
list, the thread 2 sets the node’s priority to the request priority, 3 sets the node’s
TCB pointer to itself, and 4 registers the unique identifier of the originating task
(passed as part of the request message). It 5 sets its priority to that of the request-
ing thread, per the priority information that is passed to it over the endpoint as part
of the request message, and then 6 executes its procedure, running the subtask at

Fig. 5 Implementation of Priority Propagation

92 Real-Time Systems (2024) 60:76–107

1 3

the originating task’s priority. On completion (State Finished), it 13 elevates its
priority back to its original waiting priority, 14 clears the TCB of its corresponding
Thread Manager node and returns it to the free list, then 15 replies to the requestor
and returns to waiting on the endpoint. By receiving a request and sending the
reply at the priority ceiling of the interface, these transitions between subtasks are
equivalent to critical sections with IPCP semantics (under traditional fixed-priority
preemptive scheduling) and induce equivalent blocking time as was discussed in
Sect. 3.2.1.

If a CPI implementing Priority Propagation handles nested requests that originate
from a CPI implementing PIP, it must also provide a nest method. Similarly to a
PIP CPI, an additional thread must be provided to its pool. The method 16 finds
the node in the Thread Manager executing on behalf of the corresponding requestor,
17 elevates its priority, then 18 if the thread is blocked on a further downstream
request, it calls that CPI’s nest function. Similarly to the PIP implementation,
when sending a request (State Request), a thread must 7 elevate its priority to the
PC, 8 set its Thread Manager node to the current inherited priority, 9 set the func-
tion pointer to facilitate downstream nested inheritance, then 10 send the request.
On receiving a reply, it 11 clears the function pointer, then 12 demotes its priority
back to its current inherited priority.

5 Implementation and usability enhancements

Our userspace implementation targets closed embedded real-time systems based on
a non-MCS build of the seL4 kernel, running atop unicore or fully-partitioned mul-
ticore hardware. We defer exploration of kernel-enforced properties in open systems
with untrusted components, or using MCS kernel features, to future work.

We implemented our framework with the goal of staying as true to the CAmkES
language and design philosophy as possible. Our implementation leverages existing
techniques used by the CAmkES framework, including the Jinja template engine, to
provide support for several protocols using only 659 lines of code, as summarized

Table 1 Implementation Lines
of Code

Implementation Lines of code

Base Framework C Code 102
Priority Inheritance Protocol C Code 118
Notification Manager C Code 139
Priority Propagation C Code 126
C Macros 16
CAmkES Macros 9
CAmkES Connector Declarations 100
CAmkES Connector Jinja Templates 49
Total 659

93

1 3

Real-Time Systems (2024) 60:76–107

in Table 1. It minimizes, as much as possible, the extent of changes necessary for
existing CAmkES application systems to incorporate its functionality. We now (1)
describe how we met this goal, and (2) provide an overview of how a developer
would use our framework.

CAmkES allows components to be declared with a set of attributes, to which val-
ues can be assigned. These attributes are compiled into symbols in the component
binary, and the user-provided source code for the component can use them as vari-
ables. CAmkES additionally provides several built-in attributes. For example, if a
component provides a procedure interface named “iface”, CAmkES automatically
defines an attribute iface_priority, the value of which defines the priority of
any thread that handles requests on the underlying endpoint. An active component
has an automatic attribute simply called _priority that sets the priority of its
execution thread. A user can add either of these to a component’s declared set of
attributes to make the priority available as a variable in the source code. This is
necessary for priority introspection without modification to underlying CAmkES or
seL4 code (and, therefore, for priority to be passed with a request message) because
seL4 does not provide a system call for threads to read their current priority level.

We provide three additional attributes. For components originating a task,
requestor provides a unique identifier to track the task’s control flow across
components, as described in Sect. 4. Each CPI under our framework must be
assigned the attributes _num_threads (which defines the number of threads in
the pool waiting on the endpoint) and _priority_protocol (which can be one
of “propagated,” “inherited,” or “fixed”). These attribute names must be prefixed
with the name of their associated interface, similarly to _priority. Because
CAmkES supports C preprocessor commands, we provide a function macro for ease
of use, that automatically generates the attributes for each provided task and inter-
face. Since each task’s identifier has no semantic meaning, beyond being a unique
integer identifier, the __COUNTER__ symbol can be used to easily assign a value.

CAmkES provides a library of standard connectors to component interfaces.
Among these is the seL4RPCCall, which establishes a connection for RPC invo-
cations as synchronous IPC to a CPI. CAmkES uses Jinja templates (Jinja 2022)
to generate much of the underlying code, including seL4 system calls, to broker
communication over a given connector type. We define a new class of connectors,
seL4RPCCallPrioritized, that inherits much of its functionality from the
seL4RPCCall’s templates.

In CAmkES, a particular connector type must specify the number of threads
bound to the underlying endpoint of the target CPI. Because our interfaces may
require different numbers of threads, depending on the number of possible request-
ors, we cannot limit ourselves to a single connector type. To avoid changing the
underlying CAmkES parser to support providing this as an attribute to the connector,
we provide a CAmkES connector definition file with 100 declared seL4RPCCallPri-
oritized connector types, supporting threadpools from size 1 to 100. We additionally
provide a function macro that creates a connection with the appropriate connector
type, when provided the number of threads. Because the number of threads must be
provided twice (to the _num_threads attribute and to the connector macro), we
support defining this as an object macro. We use appropriate stringification such that

94 Real-Time Systems (2024) 60:76–107

1 3

it can be passed to the function macro. For example, to establish a connection from
a client to a server interface, “iface,” that uses 2 threads, a user would write the fol-
lowing in the CAmkES language:

#define server_iface_num_threads 2
...
connection rpc(server_iface_num_threads)

conn(from client.iface , to server.iface);
...
server.iface_num_threads = server_iface_num_threads;

Our template code additionally inserts hooks into the appropriate functions in
our library: initialization, and function calls before and after the interface procedure
runs. This ensures that users of our framework do not have to remember to manually
insert the necessary hooks into the provided component source code. For initializa-
tion, we leverage the existing __init function that CAmkES declares for each pro-
cedure interface. Normally, a user would provide an appropriate function definition;
our template defines it instead, ensuring that it is called at component initialization.
To allow additional user-defined initialization, we provide an _init function dec-
laration (note the single, rather than double, underscore) that is called at the end of
our template’s initialization.

Both priority and the task identifier must be passed as function arguments for an
RPC call to a CPI implementing our protocols, which is realized by requiring that
the procedure’s C-style function declaration includes both as the last input param-
eters. This means that (1) the user-supplied source code for the requesting compo-
nent procedure must include these as function arguments when a procedure is called,
and (2) the user-supplied source code for the handling component must have a func-
tion definition with these as the last parameter. Instead of passing it directly through
the functional interface, these parafunctional properties could be passed alongside
the functional attributes/parameters in the request message, leveraging the CAm-
kES model and encoding for passing parameters between components. However, we
defer that refinement to future work. Both approaches, while different in the require-
ments they impose on the user of the framework, would be equivalent when com-
piled down to seL4 binaries.

To enable the nest function, a user of our framework must add the method to
the procedure associated with each CPI that must provide it. This is done simply by
adding the following line to the CAmkES procedure declaration:

voidvoid nest(innest(in intint priority , inpriority , in intint requestor);requestor);

The procedure must also be defined for any component using the procedure. We
provide a C function macro to simplify this: for a component that provides a pro-
cedure interface named “iface”, invoke the macro with NEST(iface). To per-
form nested requests, i.e., to achieve the functionality of steps (15–20) in Fig. 4 and
(7–12) in Fig. 5, we provide another C function macro. Because the CAmkES parser

95

1 3

Real-Time Systems (2024) 60:76–107

describes connections from components to CPIs, and a component may have multi-
ple CPIs from which a downstream request can originate, we were not able to wrap
the functionality entirely in Jinja templates. Nonetheless, the macro is intended to
be easy to use in place of the default C-style function calls for invoking requests. Its
signature is as follows:

REQUEST(interface_from ,interface_to ,method ,...)

Here, interface_from is the name of the CPI sending the request, inter-
face_to is the recipient CPI, and method is the name of the recipient procedure’s
method being invoked. As a variadic function macro, additional parameters required
by the method can also be passed. The macro will also return any value returned by
the invoked method. The integration of the macro’s functionality with our additions
to the CAmkES connector templates constrain connections to only being declared
with a single “to” end; existing connections declared with multiple “to” ends must
therefore be broken up into separate connections. Our templates check for this, and
will fail to compile (with appropriate error messages) if this requirement is not met.

Thus the framework, in its current form, relies on the user to make a few changes
to their component source code, and not just to the component-level and applica-
tion-level CAmkES specification. However, these changes are minimal and largely
necessary to avoid modifying the underlying CAmkES parser and seL4 kernel.
Additionally, our framework contains appropriate checks, such that if attributes are
incorrectly specified, or parameters and method definitions are not provided, the
application system will fail to compile. Together, its ease of use and its compilation
checks to avoid misconfiguration make our framework a good option for developing
closed real-time systems.

We additionally provide a parser to help an application designer determine the
priority ceiling and number of threads to assign each CPI that uses our protocol and
to detect possible cycles. It recursively traverses the connection graph defined by a
CAmkES system specification file, determining the maximum task priority among
possible requestors to each CPI. It additionally counts the number of possible con-
current requests, for each CPI enumerating the tasks for which it may execute. It
identifies CPIs using the “fixed” priority protocol, assigning them only a single
thread. It also identifies CPIs using the “inherited” protocol, and remains aware of
the fact that a CPI encapsulating a locking protocol cannot send multiple concur-
rent nested requests to downstream CPIs. Finally, it assigns an additional thread to
each non-“fixed” CPI downstream of a PIP interface to guarantee availability for the
nest method.

It is worth noting that because CAmkES describes connections from compo-
nents to CPIs, the CAmkES specification by itself lacks the information needed to
determine the transitive closure of a request chain, as a component with multiple

96 Real-Time Systems (2024) 60:76–107

1 3

CPIs might make nested requests as part of the procedure of only one of those; this
would not be evident from the digraph. This means, without changes to the CAm-
kES parser, that (1) the presence of a cycle does not necessarily imply a call chain
loop with deadlock potential,7 and (2) that a component on the “from” side of a con-
nection that has multiple CPIs does not necessarily send requests from both CPIs,
meaning that priority or thread counts might be overestimated. Our parser recog-
nizes these cases, and warns the user of the potential issue when it arises.

6 Evaluation

We evaluated our library using the CAmkES 3.10.0 framework, targeting version
12.1.0 of the seL4 kernel, testing synthetic task sets on both Intel x86-64 and ARMv8
AARCH32 ISA hardware platforms. We compiled using the RELEASE=TRUE and
SIMULATION=FALSE directives and enabled kernel printing. For the Intel plat-
form, we used a system with two Intel Xeon Gold 6130 Skylake processors run-
ning at 2.1 GHz, and with 32GB of memory. We disabled HyperThreading, Speed-
Step, and TurboBoost. For the ARM platform, we used a Raspberry Pi 3 Model B+,
which has a 64-bit ARMv8 Cortex-A53 Broadcom BCM2837B0 SoC with 1GB of
RAM. We disabled the L2 cache, and clocked its four cores to 700 MHz.8 Despite
the hardware supporting the AARCH64 instruction set, seL4 currently only supports
32-bit mode on the Raspberry Pi, so we compiled using the AARCH32=TRUE direc-
tive.9 On the Raspberry Pi, we additionally enabled userspace access to the ARM
Performance Monitor Unit (PMU) to allow our system to measure and print elapsed
cycles. We ran each task set according to traditional, fixed-priority preemptive
semantics (i.e. a thread is not preempted or switched out for another thread of equal
priority unless it yields the processor). This was realized by configuring the seL4
kernel with the round-robin timeslice set to a sufficiently large value.10

6.1 Protocol overheads

We begin by measuring the overheads induced by our protocol. To support fine-
grained microbenchmarking, we measure elapsed cycles (using rdtsc on Intel,
and reading directly from the cycle count register on the ARM PMU) for all

7 For example, two components might each have two CPIs, one which sends a request to the other com-
ponent, and one which receives a request from the other component. Despite the digraph of requests
forming a cycle between the two components, each request path involves a distinct set of CPIs, and there-
fore cannot deadlock.
8 The processor supports a CPU clock speed of 1.4 GHz. However, as noted in Blass et al. (2021), this
frequency cannot be sustained continuously, and may lead to throttling and instability. To maintain pre-
dictability, we boot the Raspberry Pi with a constant 700 MHz CPU clock speed, set the GPU processor
core to 250 MHz, and disable throttling. Details can be found at https:// www. raspb errypi. com/ docum
entat ion/ compu ters/ config_ txt. html
9 https:// docs. sel4. syste ms/ Hardw are/ Rpi3. html
10 We set the CONFIG_TIMER_TICK_MS kernel configuration parameter to 1,000,000 (1000 s), suf-
ficiently long to ensure appropriate behavior in our tests.

https://www.raspberrypi.com/documentation/computers/config_txt.html
https://www.raspberrypi.com/documentation/computers/config_txt.html
https://docs.sel4.systems/Hardware/Rpi3.html

97

1 3

Real-Time Systems (2024) 60:76–107

measurements. Because reading from the cycle counter incurs its own overhead, we
first benchmark these reads by measuring the elapsed cycles between two successive
cycle counts. Results are summarized in Table 2.

Dividing the maximum cycles measured between two back-to-back cycle counter
reads, the clock speed of each platform gives a bound on the temporal resolution
of our measurements of a little under 14 nsec on the Intel Xeon, and 12 nsec on
the Raspberry Pi. We individually measure the overheads for both sending requests
over an endpoint (Call) and replying to the request (Reply), separately measuring the
overheads of our PIP implementation for requests to a CPI with an already-acquired
lock (locked) versus those with an available lock (unlocked). We additionally meas-
ure the overheads of nested requests from a CPI implementing PIP to CPIs imple-
menting both PIP and priority propagation, respectively, reporting both the call and
reply times, as well as the time to send a nested priority inheritance update (Nest).
We compare these overheads for our various protocols (propagated, inherited for
PIP, and fixed for IPCP and NPCS) to the overhead of a request over the CAmkES
built-in seL4RPCCall connector; while our protocols do induce additional overhead,
the maximum values we measured (a nested call and reply to a CPI with priority
inheritance induced up to about 13,200 cycles of overhead on Intel and about 9,800
cycles on ARM) equates to less than 6.3 � s on Intel and 14.1 � s on ARM, which is
suitably low for task sets running with periods as small as 10 ms.

Table 2 Overheads (in cycles) for Protocol Mechanisms

Intel Xeon Gold 6130 Raspberry Pi 3 Model B+

Min Max Mean Std Min Max Mean Std

Read cycle counter 22 28 25 1.3 8 8 8 0
Call, built-in 2478 4568 2528 211 563 3359 619 278
Reply, built-in 2494 2836 2519 34 416 1298 449 86
Call, fixed 3178 4810 3306 189 834 2591 1010 179
Reply, fixed 2590 3342 2659 142 422 954 466 94
Call, propagated 4348 6830 4574 287 2085 5516 2368 351
Reply, propagated 3536 3960 3567 41 1606 2335 1694 76
Call, inherited, unlocked 4344 6834 4625 288 1935 5381 2226 335
Call, inherited, locked 4372 6282 4603 245 1966 5052 2242 314
Reply, inherited, unlocked 3520 4028 3549 50 1483 2095 1531 65
Reply, inherited, locked 3514 3788 3547 28 1470 2319 1531 96
Call, PIP to PIP 5364 6878 5618 240 3079 5696 3355 279
Reply, PIP to PIP 5402 6300 5462 89 2898 4109 3019 121
Nest, PIP to PIP 5144 6720 5346 303 1175 3315 1844 446
Call, PIP to propagated 5292 6306 5539 196 3165 6068 3452 308
Reply, PIP to propagated 4558 5318 4679 130 2563 3552 2668 98
Nest, PIP to propagated 6068 7530 6385 243 1838 5088 2243 351
Dispatcher Overhead 58 240 63 19 74 136 74 6
Synthetic Workload 400,052 401,658 400,824 767 845,848 848,878 847,212 411

98 Real-Time Systems (2024) 60:76–107

1 3

Furthermore, benchmarked performance numbers for the seL4 kernel without
the CAmkES framework report an average overhead of 383 and 389 cycles, respec-
tively for IPC call and reply between threads on an Intel x86_64 Skylake platform;
and 404 and 409 cycles, respectively on the ARMv8 platform in 64-bit mode (seL4
Benchmarks 2023). Even with nested priority inheritance, our mean overheads are
only about 14.4× this on the Xeon Gold 6130 and 7.84× this on the Raspberry Pi
3 Model B+. Benchmarked performance numbers from Patina (Jero et al. 2021)
are only available from an ARM Cortex-A9 processor running on the Zynq-70000
XC7Z020, and as Patina’s seL4 implementation is not open-sourced, we cannot per-
form a direct comparison. However, their maximum reported overheads for requests
to the mutex service were 11,165 cycles (unlocked) and 13,918 cycles (locked);
more than the maximum observed overhead on ARM of our mechanisms, even for
nested locking (which Patina does not support).

Fig. 6 Measured priority queue overheads (in cycles)

Fig. 7 Task and Component
Test System

99

1 3

Real-Time Systems (2024) 60:76–107

We additionally measure the overhead induced by priority queues realized by
different heap sizes within our notification manager. For a given heap size n, we
initialize the heap to hold n − 1 notification objects with random priorities, then
measure the elapsed cycles to push one more notification object into the heap,
then pop the notification object with the greatest priority (and, among those of
equal priority, the lowest insertion order). Times are plotted in Fig. 6, with error
bars indicating one standard deviation about the mean. Even the maximum values
observed are upper-bounded by 468 cycles (less than one fourth of a microsec-
ond) on Intel and 446 cycles (less than three fourths of a microsecond) on ARM.
This (1) demonstrates suitably low overhead of our notification object heap itself
even as the number of elements it holds grows to 100 (a larger value than many
realistic scenarios would experience), and (2) suggests that the overheads for our
priority inheritance protocol are dominated by the costs of the system calls it
uses.

6.2 Empirical evaluation of synthetic task sets

To facilitate checking the schedulability of actual task sets running in CAmkES
atop seL4 on our selected hardware platforms, we generate synthetic task sets over
a representative topology of interacting components (the one illustrated in Fig. 7),
all running on a single core. In each task set, components originating tasks t1 and t2
both request a CPI provided by component A, while those originating t3 and t4 both
request a CPI provided by component B. Both A and B encapsulate exclusive execu-
tion using PIP. We evaluate the 4 configurations outlined in Table 3.

For each configuration, we generate task sets with utilizations ranging from 0.1 to
1.0. For each utilization value, we generate 10 task sets: we (1) assign task utiliza-
tions according to the UUniSort algorithm (Bini and Buttazzo 2005),11 (2) randomly
select task periods from a set of harmonic values from 10 ms to 1 s,12 then (3) assign
task workloads and priorities appropriately, and (4) sort tasks by increasing work-
load. Each task is then decomposed into subtasks according to the component CPIs

Table 3 Synthetic taskset CPI
configurations

CPI C CPI D CPI E

Configuration 1 PIP Propagation PIP
Configuration 2 PIP Propagation Propagation
Configuration 3 IPCP PIP Propagation
Configuration 4 IPCP Propagation PIP

11 An alternative to UUniSort, the UUniFast algorithm, runs in linear time, where UUniSort is quasi-
linear. However, the elegance and simplicity of UUniSort, combined with our small input sizes, make it
ideal for our offline synthetic task set generation.
12 Restricting to a set of harmonic harmonic periods, instead of generating task periods according to the
log-uniform distribution described in Emberson et al. (2010), allows trials with repeated hyperperiods to
be performed efficiently.

100 Real-Time Systems (2024) 60:76–107

1 3

it traverses: we generate the workloads of each subtask (and therefore CPI) accord-
ing to UUniSort (with the sum of the subtask workloads equal to the task workload).
For each task where a CPI’s workload has already been determined (the CPI being
shared with another task, for which it executes subtasks), we use the previously
assigned value, and then generate remaining subtask workloads with UUniSort.

Each task set was run for 10 hyperperiods, with each task releasing up to 2000
jobs. We implemented periodic tasks by defining a component, the Dispatcher,
which registers a periodic timeout with the CAmkES library’s TimeServer com-
ponent. The TimeServer is included among the reusable components released with
CAmkES, though it does not natively support the Raspberry Pi. We developed a
platform-specific header for the Raspberry Pi 3’s BCM2837 firmware, which was
realized in only 40 lines of code by hooking into the seL4 library’s existing drivers
for the board’s timer hardware.

An instance of the Dispatcher is created for each task, jobs of which it dispatches
via the built-in seL4RPCCall connector. Dispatchers are assigned a priority higher
than the three tasks, which ensures that all Dispatcher initialization occurs before
any task can execute, and that any task can be preempted by job release, such that
the exact time of release can be recorded. Each Dispatcher sets a periodic timer
according to its task’s period. When the timer expires, the Dispatcher (1) issues an
instruction to read from the cycle counter, (2) sends an RPC request to its associ-
ated task component, then, when it receives a reply, (3) reads again from the cycle
counter. The worst-case overhead incurred by the Dispatcher to wait on the timer’s
underlying notification object, as well as the time it takes to determine job comple-
tion (both aggregated as the second to last line of Table 2) are subtracted from the
elapsed time. If the resulting value does not exceed the task’s period, we consider
the job to have met its deadline.

Task workloads were synthesized by looping on subsequent floating point multi-
plication and addition operations. We measured the execution time, in cycles, for 106

Fig. 8 Component configuration hierarchy to sequentially evaluate multiple task systems

101

1 3

Real-Time Systems (2024) 60:76–107

iterations on the Intel Xeon, and 105 iterations on the slower Raspberry Pi. Results
are summarized in the last line of Table 2. The measured distributions were rela-
tively narrow, showing a standard deviation of only 767 cycles (under 370 nsec) and
411 cycles (under 600 nsec) on the Raspberry Pi. The worst-case overhead of the
Dispatcher’s communication over the endpoint with its task component, as well as
its two reads from the cycle counter (shown in the first 3 rows of Table 2) are sub-
tracted from the execution times assigned to each task, before workload iterations
are assigned to individual subtasks.

To enable the testing of multiple task systems in a single run, we encapsulate
the components that compose each task system, along with an instance of a System
Dispatcher component, into a single hierarchical component, as illustrated in Fig. 8.
We then define a Root Dispatcher component, a single instance of which runs at
the highest system priority and (1) triggers the release of each task system in turn
via a synchronous RPC request to that task system’s System Dispatcher. Because of
the function call semantics of these requests, the Root Dispatcher only releases the
next task system (9) when the previous one has completed. The System Dispatcher
sends an asynchronous notification (2-4) to each Dispatcher component in its task
system. It runs at the highest system priority, ensuring that all notifications are sent
before any of the Dispatcher components can proceed. It then sets itself to the lowest
system priority, so that it cannot interfere with task execution. Once the Dispatchers
have (5) released jobs for 10 hyperperiods, they update deadline miss statistics in
a page of memory shared with the System Dispatcher, then (6-8) notify it of their
completion. Once all tasks have completed, the System Dispatcher prints the miss
statistics to the COM interface, then replies to the Root Dispatcher’s request. Note
that, due to memory constraints, we were limited to configurations of only 5 task
systems, requiring multiple separate configurations to be statically compiled and
independently evaluated to cover all generated task systems.

Perhaps unsurprisingly given the predictable and well-bounded nature of the task
execution times, and of the overheads exhibited by our library, when running on
both hardware platforms, no deadlines were missed for any of our tested task sets,
even those having a utilization of 1.0.

7 Conclusion and future work

In this paper, we extended our concurrency framework presented in Sudvarg and
Gill (2022) to support nested lock acquisition, including nested priority inheritance.
The results of our evaluations demonstrate that our extensions to the CAmkES com-
ponent framework can prioritize cross-component control flows effectively. Reen-
trant CPIs execute at the priorities of the requesting tasks, while CPIs encapsulating
critical sections use priority-based locking protocols without the need for additional
atomic operations. With no deadline misses seen even at full CPU utilization for the
task sets we evaluated, our evaluations show that those extensions allow CAmkES to
provide suitable end-to-end timing guarantees for real-time systems.

102 Real-Time Systems (2024) 60:76–107

1 3

As future work, we intend to further extend the concurrency framework presented
in this paper in several ways: prevention of race conditions under nested locking
with round-robin scheduling of threads at the same priority (e.g., via appropriate
priority laddering techniques); expansion of our framework to support end-to-end
timing guarantees across asynchronous event notifications; modification of the
CAmkES parser to automatically add priority and task identifier metadata to RPC
request messages, removing the need for the component programmer to add this
parameter to each CPI signature; and a mechanism supporting transitive closure over
request chains, allowing more robust deadlock detection and alerting to invalid com-
ponent request configurations.

Appendix A: Hyperbolic bound with blocking times

The hyperbolic bound for rate-monotonic (RM) schedulability is given by Theo-
rem 1 of Bini et al. (2003):

Theorem 1 Let Γ = {�1,… , �n} be a set of n periodic tasks, where each task �i is
characterized by a processor utilization Ui . Then, Γ is schedulable with the RM
algorithm if

The proof of this theorem in Bini et al. (2003) assumes that tasks are ordered
by increasing periods; while this does not lose generality in the case that all tasks
are assigned unique priorities, we are interested in the case where some tasks may
have equal periods, and are therefore assigned equal priorities. We begin by con-
sidering schedulability for each task.

Lemma 1.1 In the absence of blocking induced by shared resource constraints, for a
set Γ of periodic tasks, ordered by strictly decreasing priority, a task �i is schedula-
ble under RM if

Proof By Theorem 1, the task system Γi = {�1,… , �i} is schedulable if

This implies that task �i is schedulable. The addition of tasks of lower priority, i.e.
any task �j for which j > i , will not affect the schedulability of �i . Thus, Eq. A3
holds for all �i ∈ Γ . ◻

(A1)
n∏

i=1

(Ui + 1) ≤ 2

(A2)
i∏

j=1

(Uj + 1) ≤ 2

(A3)
i∏

j=1

(Uj + 1) ≤ 2

103

1 3

Real-Time Systems (2024) 60:76–107

Lemma 1.2 In the absence of blocking induced by shared resource constraints, for a
set Γ of periodic tasks, a task �i with priority Pi is schedulable under RM if

Proof For any �i ∈ Γ for which ∄j ∶ Pi = Pj, i ≠ j , Eq. A2 is equivalent.
Assume that there exists some �i for which other tasks in Γ have equal priority,

i.e., there exists a set Ki = {k ∶ Pi = Pk, i ≠ k} . In the worst case, these tasks will
be released before �i , and thus �i must wait for their completion as if they are higher
priority tasks. In this case, without loss of generality, assume that tasks are ordered
by non-decreasing priorities such ∀k ∈ Ki, k < i . Then, by this ordering, Eqs. A2
and A4 are equivalent. ◻

The proof of the following theorem follows closely with that of Theorem 16 in
Sha et al. (1990).

Theorem 2 In the presence of blocking induced by shared resource constraints, a set
Γ of n periodic tasks is schedulable under RM if

Proof Suppose that the equation is satisfied for all i, 1 ≤ i ≤ n . Then it follows
that for each task �i , Eq. A4 will also be satisfied with n = i and Ci replaced by
C∗
i
= (Ci + Bi) . That is, in the absence of blocking, �i will be schedulable even if it

executes for (Ci + Bi) units of time. It follows that task �i , if it executes for only Ci
units of time, can be delayed by Bi units of time and still meet its deadline. Hence,
the theorem follows. ◻

Funding Funding was supported by National Science Foundation [Grant Nos. CSR-1814739, CNS-
17653503] and National Aeronautics and Space Administration [Grant No. 80NSSC21K1741].

References

AUTOSAR Classic Platform. https:// www. autos ar. org/ stand ards/ class ic- platf orm/. Accessed 25 Jan 2022
Baker TP (1991) Stack-based scheduling for realtime processes. Real-Time Syst 3(1):67–99
Blackham B, Shi Y, Chattopadhyay S, Roychoudhury A, Heiser G. (2011) Timing analysis of a protected

operating system kernel. In: 2011 IEEE 32nd Real-Time Systems Symposium, pp. 339–348. https://
doi. org/ 10. 1109/ RTSS. 2011. 38

Blass T, Hamann A, Lange R, Ziegenbein D, Brandenburg BB (2021) Automatic latency management
for ros 2: Benefits, challenges, and open problems. In: 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 264–277. https:// doi. org/ 10. 1109/ RTAS5
2030. 2021. 00029

(A4)
∏

�j∶Pj≥Pi

(Uj + 1) ≤ 2

(A5)∀i, 1 ≤ i ≤ n,
∏

�j∶Pj≥Pi,j≠i

(
Uj + 1

)(Ci + Bi

Ti
+ 1

)
≤ 2

https://www.autosar.org/standards/classic-platform/
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1109/RTSS.2011.38
https://doi.org/10.1109/RTAS52030.2021.00029
https://doi.org/10.1109/RTAS52030.2021.00029

104 Real-Time Systems (2024) 60:76–107

1 3

Bini E, Buttazzo GC (2005) Measuring the performance of schedulability tests. Real-Time Syst
30(1–2):129–154

Bini E, Buttazzo GC, Buttazzo GM (2003) Rate monotonic analysis: the hyperbolic bound. IEEE Trans
Comput 52(7):933–942. https:// doi. org/ 10. 1109/ TC. 2003. 12143 41

Buttazzo GC (2011) Hard Real-Time Computing Systems, 3rd edn., pp. 205–248. Springer, New York.
Chap. 7

CAmkES Manual. https:// docs. sel4. syste ms/ proje cts/ camkes/ manual. html. Accessed 23 Jan 2022
CORBA Component Model (version 3.0). https:// www. omg. org/ spec/ CCM/3.0. OMG Document for-

mal/02-06-65. Accessed 24 May 2001
Elphinstone K, Heiser G (2013) From l3 to sel4 what have we learnt in 20 years of l4 microkernels? In:

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP ’13,
pp. 133–150. Association for Computing Machinery, New York, NY, USA

Emberson P, Stafford R, Davis RI (2010) Techniques for the synthesis of multiprocessor tasksets. In:
WATERS Workshop at the Euromicro Conference on Real-Time Systems, pp. 6–11

Ford B, Lepreau J (1994) Evolving mach 3.0 to a migrating thread model. In: USENIX Winter 1994
Technical Conference (USENIX Winter 1994 Technical Conference). USENIX Association, San
Francisco, CA

Jero S, Furgala J, Pan R, et al. (2021) Practical principle of least privilege for secure embedded systems.
In: 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS),
1–13. https:// doi. org/ 10. 1109/ RTAS5 2030. 2021. 00009

Jinja. https:// jinja. palle tspro jects. com/. Accessed 23 Jan 2022
Klein G, Elphinstone K, Heiser G, et al. (2009) Sel4: Formal verification of an os kernel. In: Proceedings

of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. SOSP ’09, pp. 207–220.
Association for Computing Machinery, New York, NY, USA

Klein G, Andronick J, Elphinstone K et al (2014) Comprehensive formal verification of an os microker-
nel. ACM Trans Comput Syst 32(1):1–70

Kluge F, Yu C, Mische J, Uhrig S, Ungerer T (2009) Implementing autosar scheduling and resource man-
agement on an embedded smt processor. In: Proceedings of Th 12th International Workshop on
Software and Compilers for Embedded Systems. SCOPES ’09, pp. 33–42. Association for Comput-
ing Machinery, New York, NY, USA

Kuz I, Liu Y, Gorton I, Heiser G (2007) Camkes: a component model for secure microkernel-based
embedded systems. J Syst Softw 80(5):687–699. https:// doi. org/ 10. 1016/j. jss. 2006. 08. 039. Elsev ier

Liedtke J (1993) Improving ipc by kernel design. SIGOPS Oper Syst Rev 27(5):175–188
Lipari G, Lamastra G, Abeni L (2004) Task synchronization in reservation-based real-time systems.

IEEE Trans Comput 53(12):1591–1601. https:// doi. org/ 10. 1109/ TC. 2004. 120
Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard-real-time environ-

ment. J ACM 20(1):46–61
Lyons A, McLeod K, Almatary H, Heiser G (2018) Scheduling-context capabilities: a principled, light-

weight operating-system mechanism for managing time. In: ACM EuroSys Conference, pp. 1–16.
https:// doi. org/ 10. 1145/ 31905 08. 31905 39

Mergendahl S, Jero S, Ward BC, Furgala J, Parmer G, Skowyra R (2022) The thundering herd: Ampli-
fying kernel interference to attack response times. In: 2022 IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 95–107. https:// doi. org/ 10. 1109/ RTAS5 4340.
2022. 00016

McIlroy MD (1969) Mass-produced software components. Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany 7–11(1968):79–85

Parmer G (2010) The case for thread migration: Predictable ipc in a customizable and reliable os. In: Pro-
ceedings of the Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), pp. 91–100

Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: an approach to real-time synchro-
nization. IEEE Trans Comput 39(9):1175–1185. https:// doi. org/ 10. 1109/ 12. 57058

Specification of Operating System. https:// www. autos ar. org/ filea dmin/ user_ upload/ stand ards/ class ic/ 21-
11/ AUTOS AR_ SWS_ OS. pdf. Classic Platform Standard Release R21-11. Accessed 25 Jan 2022

Subramonian V, Deng G, Gill C, Balasubramanian J, Shen L-J, Otte W, Schmidt D, Gokhale A, Wang
N (2007) The design and performance of component middleware for qos-enabled deployment and
configuration of dre systems. J Syst Softw 80(5):668–677

https://doi.org/10.1109/TC.2003.1214341
https://docs.sel4.systems/projects/camkes/manual.html
https://www.omg.org/spec/CCM/3.0
https://doi.org/10.1109/RTAS52030.2021.00009
https://jinja.palletsprojects.com/
https://doi.org/10.1016/j.jss.2006.08.039.Elsevier
https://doi.org/10.1109/TC.2004.120
https://doi.org/10.1145/3190508.3190539
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1109/RTAS54340.2022.00016
https://doi.org/10.1109/12.57058
https://www.autosar.org/fileadmin/user_upload/standards/classic/21-11/AUTOSAR_SWS_OS.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/21-11/AUTOSAR_SWS_OS.pdf

105

1 3

Real-Time Systems (2024) 60:76–107

Subramonian V, Wang N, Shen L-J, Gill C (2004) The design and performance of configurable com-
ponent middleware for distributed real-time and embedded systems. In: IEEE Real-Time Systems
Symposium (RTSS) 252–261

Sudvarg M, Gill C (2022) A concurrency framework for priority-aware intercomponent requests in cam-
kes on sel4. In: 2022 IEEE 28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 1–10. https:// doi. org/ 10. 1109/ RTCSA 55878. 2022. 00007

seL4 Benchmarks. https:// sel4. syste ms/ About/ Perfo rmance/. Accessed 02 June 2023
Sprunt B. (1990) Aperiodic task scheduling for real-time systems. Technical report, Carnegie Mellon

University
Stanovich M, Baker TP, Wang A-I, Harbour MG (2010) Defects of the posix sporadic server and how to

correct them. In: 2010 16th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium, pp. 35–45. https:// doi. org/ 10. 1109/ RTAS. 2010. 34

Steinberg U, Wolter J, Hartig H (2005) Fast component interaction for real-time systems. In: 17th Euro-
micro Conference on Real-Time Systems (ECRTS’05), pp. 89–97. https:// doi. org/ 10. 1109/ ECRTS.
2005. 16

Steinberg U, Böttcher A, Kauer B. (2010) Timeslice donation in component-based systems. In: Pro-
ceedings of the Workshop on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), pp. 16–23

Steinberg U, Kauer B (2010) Nova: A microhypervisor-based secure virtualization architecture. In: Pro-
ceedings of the 5th European Conference on Computer Systems. EuroSys ’10, pp. 209–222. Asso-
ciation for Computing Machinery, New York, NY, USA

The seL4 microkernel. https:// docs. sel4. syste ms/ proje cts/ sel4/. Accessed 23 Jan 2022. https:// doi. org/ 10.
5281/ zenodo. 591727

Wang Q, Song J, Parmer G. (2011) Execution stack management for hard real-time computation in a
component-based os. In: 2011 IEEE 32nd Real-Time Systems Symposium, pp. 78–89. https:// doi.
org/ 10. 1109/ RTSS. 2011. 15

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Marion Sudvarg is a PhD candidate studying computer science at
Washington University in St. Louis, advised by Christopher Gill. He
earned bachelor’s degrees in math and physics, and a master’s degree
in computer science with an emphasis on data mining and machine
learning, from Wash U. His research interests are in developing
robust, adaptable, and secure real-time computing systems, and he
works with the ADAPT collaboration to develop real-time data anal-
ysis algorithms and systems for time-domain and multi-messenger
astrophysics.

https://doi.org/10.1109/RTCSA55878.2022.00007
https://sel4.systems/About/Performance/
https://doi.org/10.1109/RTAS.2010.34
https://doi.org/10.1109/ECRTS.2005.16
https://doi.org/10.1109/ECRTS.2005.16
https://docs.sel4.systems/projects/sel4/
https://doi.org/10.5281/zenodo.591727
https://doi.org/10.5281/zenodo.591727
https://doi.org/10.1109/RTSS.2011.15
https://doi.org/10.1109/RTSS.2011.15

106 Real-Time Systems (2024) 60:76–107

1 3

Zhuoran Sun is a PhD student studying computer science at Wash-
ington University in St. Louis. He earned his master’s degree in com-
puter science from Washington University in St. Louis. His current
research interests are in elastic mixed criticality real-time systems
and multiprocessor scheduling.

Ao Li received his B.E. in Computer Science from Shanghai Univer-
sity, Shanghai, China, in 2020, and a degree of Ingenieur in Com-
puter Science from Sorbonne Universities, University of Technology
of Compiègne, France, in 2019. He is currently pursuing a Ph.D.
degree at Washington University in St. Louis, USA. His research
interests include system security, real-time systems, and robotic
systems.

Chris Gill is a Professor in the Department of Computer Science and
Engineering at Washington University in St. Louis. His research
focuses on assuring properties of cyber-physical, real-time, and
embedded systems in which software complexity, interactions with
unpredictable environments, and heterogeneous platforms demand
novel solutions that are grounded in sound theory. A major goal of
his work is to assure that constraints on timing, memory footprint,
fault-tolerance, and other system properties can be met across hetero-
geneous applications, operating environments, and deployment plat-
forms. He has led or contributed to the development, evaluation, and
open source release of numerous real-time systems research plat-
forms and artifacts, including: the Kokyu real-time scheduling and
dispatching framework that was used in several AFRL and DARPA
projects and flight demonstrations; the nORB small-footprint real-
time object request broker; the CyberMech platform (collaborative
with Purdue University) for parallel Real-Time Hybrid Simulation;
and the RT-Xen real- time virtualization research platform, from

which the RTDS scheduler was transitioned into the Xen software distribution.

107

1 3

Real-Time Systems (2024) 60:76–107

Authors and Affiliations

Marion Sudvarg1 · Zhuoran Sun1 · Ao Li1 · Chris Gill1 · Ning Zhang1

 * Marion Sudvarg
 msudvarg@wustl.edu

 Zhuoran Sun
 zhuoran.sun@wustl.edu

 Ao Li
 ao@wustl.edu

 Chris Gill
 cdgill@wustl.edu

 Ning Zhang
 zhang.ning@wustl.edu

1 Department of Computer Science and Engineering, Washington University in St. Louis, 1
Brookings Drive, St. Louis, MO 63130, USA

Ning Zhang is an Assistant Professor in the Department of Com-
puter Science and Engineering at Washington University in St.
Louis. Before joining Washington University, he was a principal
cyber engineer/researcher and technical lead in the industry from
2007 to 2018. Ning’s research focus is cyber-physical system secu-
rity. His work has received awards from DSN 2023, USENIX Secu-
rity 2023, and RTSS 2023. He is also a recipient of the NSF
CAREER award. Ning received his PhD from Virginia Polytechnic
Institute and State University in 2016.

	Priority-based concurrency and shared resource access mechanisms for nested intercomponent requests in CAmkES
	Abstract
	1 Introduction
	2 Background and related work
	3 System model
	3.1 Task and component model
	3.2 Resource access protocols and schedulability
	3.2.1 Priority propagation
	3.2.2 Immediate priority ceiling protocol
	3.2.3 Priority inheritance protocol

	4 Design and implementation
	4.1 Shared resource access protocols
	4.2 Priority inheritance protocol
	4.3 Priority propagation

	5 Implementation and usability enhancements
	6 Evaluation
	6.1 Protocol overheads
	6.2 Empirical evaluation of synthetic task sets

	7 Conclusion and future work
	Appendix A: Hyperbolic bound with blocking times
	References

