
Parameterized Workload Adaptation for Fork-Join
Tasks with Dynamic Workloads and Deadlines

Marion Sudvarg, Jeremy Buhler,
Roger D. Chamberlain, Chris Gill, Jim Buckley

Washington University in St. Louis
{msudvarg, jbuhler, roger, cdgill, buckley}@wustl.edu

Wenlei Chen
University of Minnesota, Twin Cities

chen6339@umn.edu

Abstract—Many real-time systems run in dynamic environ-
ments where exogenous factors inform task workloads and
deadlines, which may not be known prior to job release. A
job of a task that would otherwise miss its deadline may
adapt to remain schedulable by executing in a degraded state
that reduces its workload. We suggest that such a task should
adjust parameters of its computation over multiple dimensions
to maintain schedulability while minimizing loss of utility, which
we discuss for highly parallel fork-join tasks executing on a fixed
number of dedicated processors. We identify the parameterized
degrees of freedom over which workload can be adjusted, then
characterize the impact of workload reduction on response time
and utility. From this, we generate a Pareto-optimal surface over
which efficient search, interpolation, and extrapolation enable
online selection of task parameters at time of job release.

We apply this approach to the Advanced Particle-astrophysics
Telescope, a planned mission to perform real-time gamma-ray
burst (GRB) localization using SWaP-constrained embedded
hardware aboard an orbiting platform. Due to GRBs’ dynamic
and uncertain nature, the workload and deadline may not be
known prior to job release. Nonetheless, even for bright GRBs
that may otherwise take longer than a second to localize on
candidate embedded hardware, our approach often enables sub-
degree accuracy while meeting a 33 ms imposed deadline.

I. INTRODUCTION

Many real-time systems execute in dynamic environments
where exogenous factors inform task workloads and latency
requirements, which therefore may not be known prior to job
release. If a job’s workload cannot be completed in time,
it nonetheless might be able to adjust its computation to
provide an imprecise result prior to the deadline: anytime
workloads [1] stop executing when their budget is exhausted,
providing the current state of their results, while others support
discrete execution modes corresponding to varying degrees of
precision that can be selected prior to execution [2], [3].

However, anytime or discrete semantics may not fully
capture the dimensions over which a task’s workload can
adapt to meet its deadline. Some computations have multiple
parameterized degrees of freedom that can be adjusted from
their nominal values. These can be categorical (e.g., selecting
from among a collection of algorithms) or numeric. Numeric
parameters typically take discrete values (e.g., the number
of iterations to refine a result), though at fine granularity,
they can be approximated as a continuous state space (e.g.,
the proportion of input data selected from a large set for

The research presented in this paper was supported in part by NSF
grants CSR-1814739, CNS-17653503, CNS-2229290 (CPS) and NASA grant
80NSSC21K1741 and was performed on behalf of the APT collaboration.

processing). If an instance of a task is not schedulable when
run using its desired computational mode, its utilization may
be reduced or compressed by adjusting these parameters to
guarantee completion while minimally degrading result utility.

In this paper, we consider the problem of parameterized
workload adaptation for highly parallel fork-join tasks with
dynamic workloads and deadlines executing on a fixed number
of dedicated cores. We compress the task’s workload by
adjusting its parameters so as to maximize the utility of
its result within the available running time. For example, in
simultaneous localization and mapping (SLAM) systems [4],
result utility can be scored objectively according to the relative
pose error (RPE) [5]; compression should therefore seek to
minimize RPE within the constraints of schedulability.

Several challenges must be addressed in the face of dynamic
workloads and deadlines. Characterizing the objective as a
closed-form function over multiple parameterized dimensions
may be difficult, and finding optimal values for each parameter
that satisfy the problem’s dynamic constraints may be ineffi-
cient for online compression. Furthermore, while parameters
must be assigned to satisfy schedulability under worst-case
assumptions, avoiding unnecessary worst-case pessimism (i.e.,
overcompression) remains a goal of this work.

Our solution is to quantify loss empirically for a large
set of states (i.e., joint parameter settings), constructing a
monotonically-decreasing hull of hyperplanes between these
states. The set of all states is reduced to a Pareto-optimal
surface by sorting candidate states in order of worst-case
response times for a target platform and removing those for
which a greater response time yields a lower utility. At job
release, this surface can be efficiently searched to find a state
satisfying the dynamic constraints imposed by the job-specific
workload and deadline. Selected parameter values define a
computational mode prior to execution. Despite conservative
parameter selection to guarantee schedulability under worst-
case execution times, some application semantics enable less
pessimism. For example, an execution time budget may be
assigned to anytime subtasks to allow additional execution if
assigned work is completed early, and alternative approaches
of slack reclamation (such as we describe in Sec. VIII) are
sometimes possible.

We apply our techniques to the Advanced Particle-
astrophysics Telescope (APT) [6], a planned orbital observa-
tory that will detect and localize gamma-ray bursts (GRBs)
in real time using onboard embedded hardware that is highly

2

constrained in size, weight, and power (SWaP). Localization is
a highly parallel fork-join task with a workload and deadline
that depend on the unique characteristics of each GRB [7].
We demonstrate that our approach enables efficient online
compression and slack reclamation, allowing for rapid and
accurate localization of even bright transient GRBs that may
provide only a short window of opportunity for observation.

II. BACKGROUND AND RELATED WORK

Several approaches have been explored for adapting work-
loads under resource-constrained recurrent execution. Elastic
scheduling models offer frameworks for dynamic adaptation
of task utilizations to avoid system overload. The elastic
model for implicit-deadline tasks on a uniprocessor [8], [9]
compresses each task’s utilization proportionally to its elas-
ticity, a value indicating its relative adaptability. The model
was extended to constrained-deadline tasks [10], [11], to
multiprocessors [12], to federated scheduling of parallel real-
time tasks for which periods [13] and workloads [14] are
compressed over continuous ranges, and to tasks for which dis-
crete sets of candidate utilizations may be accommodated [15].
Under federated scheduling, each parallel task executes on
cores dedicated according to a sufficiency condition [16];
task utilizations are compressed so that the assigned cores fit
within those available. While several of these models compress
workloads, they do not describe how best to adapt computation
under the applied constraints. The discretely elastic model
considers specific modes of execution, but this does not
capture the multiple degrees of freedom over which a task’s
workload may be compressed. Recent work [17] suggests
using subtask-specific objective functions but is limited to
end-to-end sequential execution and does not consider how
compressing a subtask may affect its successors.

In [18], the authors survey protocols for switching be-
tween execution modes without missing deadlines. An adap-
tive framework in [19] degrades task execution according to
“service levels,” allowing for a user-defined notion of quality
of outcome. A similar approach was presented for parallel
LiDAR object detection [3] and applied to the PointPillars [20]
encoder, aiming to maximize utility while maintaining schedu-
lability guarantees by profiling execution times and assigning
accuracies to discrete states. Such approaches may allow for a
more objective measure of performance than traditional elastic
scheduling, which compresses task utilizations proportionally
to their elasticity. However, they are limited in practice to a
small set of discrete states. We propose to allow adaptation
according to a user-defined objective function over multiple
degrees of freedom involving continuous or discrete numeric
values and categorical variables.

Recent work on dynamic deadline-driven execution [21]
presents a novel adaptation scheme for tasks with
environment-dependent deadlines and execution times.
This data-driven execution model provides handlers for
deadline misses, allowing downstream components in the
computational pipeline to adapt in response. The authors
argue that periodic execution models, which use conservative

WCET estimates, fail “to maximize the runtime-accuracy
trade-off due to the large skew between the mean and
maximum runtime,” which typically “leaves plenty of slack.”
In Sec. IX, we demonstrate an approach that reclaims slack
to provide higher utility while still using conservative WCET
estimates to prevent deadline misses.

Our work focuses on highly parallel fork-join tasks, for
which it is straightforward to characterize a closed-form worst-
case response time under a nearly optimal schedule as a
function of its compressible parameters. Many real-world
applications [22], [23], including APT’s GRB localization
task [7], [24], [25], can be described as such.

III. PROBLEM STATEMENT

We consider recurrent, constrained-deadline, highly parallel
fork-join tasks. Each released job is characterized by workload
C, representing its worst-case execution time on a single
processor core; and relative deadline D, the interval after
its release by which it must complete execution. The task’s
workload and deadline may be dynamic but are fixed for a
given instance at job release. Such a task τ can be decomposed
into a sequence of subtasks {τi} with workloads Ci, where
each subtask is either sequential (s) or parallel (p), as is
illustrated in Fig. 1 in Sec. V. We assume the task executes
on a fixed number of dedicated cores n; as these are highly
parallel tasks for which parallel subtasks have workloads that
can be distributed evenly across processors, the worst-case
response time R can be expressed as

R =
∑
τi is s

Ci +
∑
τi is p

Ci

n
(1)

Every prior instance of a constrained-deadline task must
complete before activation of its next job. This implies that the
task is schedulable if and only if R ≤ D for each instance.

In this paper, we address the scenario where a job is
released with a workload and deadline for which it is not
schedulable. We consider computationally elastic tasks having
multiple execution states associated with a set of application-
specific parameters {aj} over which workload can be adjusted
according to one of the following semantics, allowing response
time to be expressed as a monotone non-decreasing function
R({aj}):

1) The workload of one or more subtasks may be a function
Ci({aj}) of discrete or continuous numeric parameters;
these must be monotone non-decreasing in each parameter.
Sec. VI provides examples of subtasks having execution
times linear or quadratic in a continuous numeric parameter
representing the amount of input data to process.

2) A discrete numeric parameter (e.g., a number of iterations)
may change the sequence of subtasks. In this work, we
consider the case where such a parameter defines the
number of identical copies of a sequence of subtasks.

3) A categorical parameter may change the computational
mode (e.g., the algorithm used) of one or more subtasks.
In this case, each mode may impose its own workload as

3

a function Ci({aj}) of the other parameters. To match
the semantics of (1), we assign numeric values to each
category, with the requirement that a larger numeric value
is assigned to a mode with a greater workload.

Each parameter aj is constrained by some maximum value
amax
j . These values may be either constants or monotone non-

decreasing functions of another parameter. The uncompressed
workload is defined as that associated with each parameter
taking its maximum value. Formally, a task with a dynamic
workload is one for which some values amax

j are unknown
prior to job release. If a job is not schedulable, its workload
is compressed by selecting values {aj} such that its response
time does not exceed its deadline. Compression should attempt
to maximize the utility of the system by minimizing some
application-specific loss function L({aj}) of these parameters.
We consider applications for which L is monotone non-
increasing with each parameter, i.e., doing more work yields
a better result. We formulate our problem as follows:

min
{aj}

L({aj}) (2a)

s.t. R({aj}) ≤ D (2b)

∀j , amin
j ≤ aj ≤ amax

j (2c)

Here, amin
j constrains the parameter to some minimum value

and is assumed to be known a priori.
The problem, then, is to identify the parameters over which

a task’s workload may be compressed; to characterize their
impact on the task’s response time and the utility of its result;
and finally to use this information to solve optimization prob-
lem (2) efficiently online to adjust a released job’s computation
to adapt to overload.

IV. SOLUTION OVERVIEW

In this section we provide a solution overview for highly
parallel fork-join tasks executing on a fixed number of dedi-
cated cores. In subsequent sections we then illustrate and eval-
uate our approach in the context of a real-world application.

Offline Steps. The following steps are performed first offline,
enabling an efficient online solution search.

1⃝ Identify Parameters. Parameters may be identified
offline by inspection of the application and should match the
semantics listed in Sec. III. The parameters for adapting APT’s
GRB localization task are described in Sec. VI.

2⃝ Characterize an Objective Function. Utility loss for
an application can be quantified empirically for a large set of
input state combinations. For each parameter aj , a number
bj of values within the state space should be considered.
The complete Cartesian product of these values should be
tested, except where some parameter is constrained by an-
other. Smaller values of bj reduce the number of samples
for efficiency of offline analysis, but denser sampling may
allow for more accurate characterization of the objective (and
the input space may still be reduced in 4⃝ for use online).
The selection is left up to the application designer, though
for categorical parameters, each possible value should be

considered. In Sec. VI, we identify 4 parameters and test 2657
input states for GRB localization.

For x numeric and y categorical parameters, the objective
will be a function of x+ y dimensions, characterized as

∏
y bj

x-dimensional manifolds. Fitting a closed-form function to the
losses observed at the sampled states may be difficult and
error-prone. Instead, our approach allows the loss function to
be represented as a monotonically decreasing hull formed by
hyperplanes connecting the space of observed states. Construc-
tion from a Pareto-optimal subset of states is described in 4⃝.

3⃝ Quantify Response Time. The task’s worst-case re-
sponse time can be quantified by decomposing it into con-
stituent subtasks, then profiling subtask execution times in-
dividually or in groups that share dependence on common
parameters. Constituent execution time functions Ci({aj})
can thus be characterized for those parameters satisfying
semantic (1) from Sec. III. For those parameters aj satisfying
semantic (2), some subset of subtasks is duplicated by the
parameter value, equivalent to scaling the workload of the
individual subtasks by aj . This can be incorporated into the
expression Ci({aj}). From this, Eqn. 1 can be used to compute
response times as functions of execution times, allowing easy
adjustments of core assignments for the application on a
given platform. For categorical parameters, the response-time
functions for the Cartesian product of their values must be
identified, resulting in up to

∏
y bj functions of the form

R({aj}) =
∑
τi is s

Ci({aj}) +
∑
τi is p

Ci({aj})
n

. (3)

While the set of functions grows exponentially in the
number of categorical parameters, realistically this can be rep-
resented more compactly. Such parameters typically represent
the selection between a handful of available computational
modes or algorithms to apply to a phase of the application.
These are selected by the application designer and so may be
as small in number as desired. For example, in Sec. VI, a
single categorical parameter selects one of two algorithms for
an initial approximation of a gamma-ray burst’s direction; this
selection only affects the response time of the approximation
stage subtasks. As the results in Sec. IX demonstrate, a single
such parameter is sufficient for our target application.

4⃝ Generate Pareto-Optimal Surface. Candidate states are
sorted by response time, after which any state with a higher
loss than the previous state (i.e., a higher response time results
in a worse outcome) is discarded. As noted in Sec. VIII, for
APT, this procedure yields fewer than 100 candidate states for
each platform we tested. From these, we construct hyperplanes
connecting adjacent states for interpolation. For each candidate
state s, we find the points from the original set of states
having the next larger value of each parameter respectively
with lower error,1 holding constant the other parameters in
s. These hyperplanes can be extended for extrapolation to
parameter values beyond the ranges used to infer the surface.

1Due to the often stochastic nature of characterizing loss, some adjacent
states may not have a lower objective value for a larger parameter value.

4

Online Steps. To implement online task compression, we
modify the task to include an initial sequential subtask that
calculates its response time according to the revealed con-
straints on workload parameters at time of release. In an over-
load scenario, the subtask should then solve the optimization
problem (2) and apply the resulting parameters. Realizing
computational mode changes is application-specific, but we
outline an OpenMP-based approach for GRB localization in
Sec. VII. As this subtask adds to task workload, it must remain
efficient and be accounted for in the response time.

5⃝ Check for Overload. When a job of a dynamic task
arrives, the initial subtask must determine if the job will
complete in time. To do so, it must calculate response time
based on the parameter constraints revealed. We assume that
each function Ci({aj}) can be computed in time linear in
the number of numeric parameters x, so for a given input
state, response time can be calculated in time O(xdm) for m
subtasks and xd numeric parameters with dynamic constraints.

6⃝ Online Solution Search. If a job’s response time ex-
ceeds its deadline, the Pareto-optimal surface can be searched
for a set of parameters that satisfy schedulability. Binary search
over the sorted set of candidates finds the state s with the
greatest response time not exceeding the deadline, from which
a Pareto-optimal solution is then obtained by interpolation or
extrapolation. This can be performed efficiently by considering
each parameter in s connected to an adjacent state in 4⃝, with
the other parameters held constant, solving in constant time for
the value yielding a response time equal to the deadline. The
best such value obtained (i.e., the one corresponding to the
state with the lowest objective function value) is chosen. This
takes total time linear in the number of numeric parameters.

In the case that the state s has values that exceed the
dynamic parameter constraints imposed on the job, iterative
search down from s can be used to find the best state s′

for which all parameters are within the constraints. However,
parameter extrapolation from this state is not guaranteed to
find a Pareto-optimal set of parameters, though the values
will have a higher expected utility than s′. This is not a
problem for our target application, as its dynamic constraints
(described in Sec. VI) are defined by the amount of input
data available, and our real-world test cases (described in
Sec. IX) all provide sufficient input data. As such, exploration
of alternative approaches (such as storing multiple surfaces,
or falling back to iterative search over the complete set of
candidate states generated in 3⃝) are deferred to future work.

7⃝ Adapt Task Execution. For subtasks with discrete
modes, execution should proceed according to the state defined
by the input parameters, but this may result in overcom-
pression as worst-case response times are often pessimistic.
For collections of subtasks with anytime workloads, workload
compression can instead be applied by calculating WCETs
corresponding to the given input parameters. This portion of
the task may then be allowed to proceed until the compressed
WCET or response-time limit has been reached, whereupon
it is stopped and the current result is used. Some applica-
tions may provide other opportunities to reduce pessimistic

overcompression via slack reclamation; we describe one such
approach for GRB localization in Sec. VIII.

V. TARGET APPLICATION: GRB LOCALIZATION

The Advanced Particle-astrophysics Telescope (APT) [6] is
a planned space-based observatory that will support multi-
wavelength and multi-messenger astrophysics [26]–[28] by
rapidly detecting gamma-ray bursts (GRBs) and directing
follow-up instruments to observe GRBs across broad ranges
of wavelengths and emission modalities. APT is designed for
a nearly full-sky field of view, but many follow-up instruments
have narrow apertures (often <1◦) and so must point almost
directly at the GRB source. APT will do onboard detection
and localization of GRBs in real-time, enabling prompt com-
munication of precise source directions to those instruments.

We consider reconstruction and localization of Compton-
regime GRBs using techniques presented in [24], [25]. Thou-
sands to millions of gamma-ray photons enter APT’s detector
from a single burst. Each may Compton-scatter one or more
times before being photoabsorbed; each interaction is referred
to as a hit, and a single photon’s hits are collectively referred
to as an event. Event reconstruction, followed by localization
of the GRB by combining multiple reconstructed events, both
execute on a fixed number of cores in SWaP-constrained
hardware flying aboard the orbital platform.

The GRB localization task forms the highly parallel fork-
join computation illustrated in Fig. 1. The task can be decom-
posed into a sequence of subtasks that collectively form the
three stages detailed in Sec. VI. Each instance of this task,
corresponding to the detection and localization of a unique
GRB, is highly variable in its workload and deadline. The
workload depends on the number of detected events, which
itself is a function of the burst’s spectral-energy distribution,
angle with respect to the detector, and fluence (a measure
proportional to the number of incident gamma rays) [7]. The
deadline may depend on the burst duration, which can range
from around 10 ms to 20 minutes in the Compton regime [29]–
[32]. It also may be informed by the communication latency
and slewing speeds of available follow-up instruments. Speed-
of-light delays to ground-based devices impose an extra ≈5 s
of latency, but APT could be instead be coupled with an
onboard optical telescope (similarly to Swift’s UVOT [33]).
For highly transient bursts, the window of opportunity for
follow-up observations may be very brief, though the timescale
of prompt emissions in secondary modalities is still an open
question in astrophysics. The localization task therefore must

Reconstruction Approximation

…

Refinement

… …

1 iteration

…

Fig. 1: APT’s highly parallel fork-join localization task.

5

Param Stage Description Constraint
nr Reconstruction Events to reconstruct 30 ≤ nr ≤ ne

α Approximation Approximation technique α ∈ {FibSpiral, ApproxCircles}
ns Approximation Number of annuli to sample for joint log-likelihood max{10, na} ≤ ns ≤ min{1000, na}
x Refinement Refinement iterations x ∈ {0 . . . 20}

TABLE I: Compressible parameters for APT localization task.

adaptable to guarantee completion before a deadline that
may not be known a priori, even for highly transient bursts
generating large volumes of data.

To characterize system performance, we simulate the in-
strument’s response to several GRBs with the APTSoft pack-
age [34] that uses the Geant4 simulator [35] to generate
independent gamma rays from a simulated source and track
their physical interactions in the detector, then models the
response of the front-end electronics. We generate sets of 106

gamma rays using two spectral-energy distributions character-
istic of short GRBs [36]. We use two Band [37] functions
with parameters α=−0.5, Epeak=490 keV, β∈{−3.2,−2.1} to
capture a range of spectral profiles. Spectral energies are in
[100 keV−30MeV] to match the Compton regime of the Fermi
Gamma-ray Burst Monitor (GBM) sensitivity [38], data from
which the distributions presented in [36] were obtained. For
each spectrum, we first generate a normally-incident set, and
then the sets described by the Cartesian product of {30◦, 60◦}
polar angles and {0◦, 45◦} azimuth angles. This gives a
total of 10 synthetic GRBs across 5 incident angles and 2
spectral energy distributions, which we use to characterize
the pipeline’s localization accuracy and worst-case execution
times.

VI. PARAMETERS AND LOSS FUNCTION

Workloads in each of APT’s three pipeline stages may be
compressed to fit a dynamic deadline known only when each
job is released. We aim to minimize an objective function
informed by the angular error in the predicted GRB source
direction, while still guaranteeing that the deadline is met. The
associated compressible parameters are outlined in Table I.

Stage 1: Event Reconstruction. For each event, we use
the tree search algorithm from [24] to infer the temporal
order of the first two hits, constraining the gamma ray’s
source vector to an annulus on the unit sphere with thickness

Fig. 2: Impact of nr on localization error. Note that axes are logarithmic.

determined by uncertainties in detector spatial and energy
measurements [39]. In simulation, events with more than 6
hits are extremely uncommon (<0.01%), so we exclude these
from reconstruction to bound the tree traversal. Physically
impossible reconstructions are dropped, with the remaining na

annuli passed to localization. Reconstruction can degrade by
dropping events: for ne reconstructable events, we can select
nr≤ne events to actually reconstruct. As ne is typically on
the order of several thousand or more, we approximate nr as
a continuous numeric variable. Reconstruction is an anytime
workload: the stage can stop at any point.

To characterize the impact of compressing nr, we iterated
over a geometric progression of 11 values from 30 to 30 000,
using uncompressed values for all other input parameters. For
each value of nr, we generated 10 000 inputs to the pipeline
by randomly sampling 1000 subsets of reconstructable events
from each of the 10 simulated GRBs. Fig. 2 plots the discrep-
ancy in degrees between the inferred and true source direction
against the number of events reconstructed, with the vertical
bars enclosing the extent of the distribution. Because of the
high variance in localization error for a given value of nr,
rather than using expected error as the objective, we instead
use 68% containment (representing the 68th percentile error,
a commonly used metric for GRB localization accuracy [34],
[40]). These values are shown in Fig. 2, which illustrates a
roughly log-log linear dependence on nr.

Stage 2: Initial Source Approximation. We use multilateration
over reconstructed annuli to infer the GRB’s source direction.
This involves an initial rough approximation that is then
iteratively refined in Stage 3. We consider two approximation
techniques (α) both of which execute over a subset ns≤na of
the input annuli. Our prior work [24], [25] fixed ns=1000 and
used only the first approximation technique (ApproxCircles).
It uniformly distributes 720 points around each of 20 circles
selected at random from ns, finds the point from each with
the greatest joint log-likelihood over all ns annuli, then uses a
weighted mean to approximate the source vector. The second
technique (FibSpiral) is new to this work. It generates 100
points almost uniformly over the surface of the unit sphere
with a Fibonacci spiral. For each point, it finds the joint log-
likelihood over all ns annuli, then approximates the source
vector as a weighted mean over the top 10. Approximation
requires both α and ns to be specified prior to computation.

While FibSpiral is much faster (requiring only 100·ns

log-likelihood computations, versus 14 000·ns for ApproxCir-
cles), it has less fidelity in its estimate for equal values of ns.
In this work, we constrain ns to the range [10, 1000], which
with the choice of α approximates two continuous state spaces
that are non-overlapping in execution time but may overlap in
result accuracy, as illustrated in Fig. 3. Measured 68% con-

6

Fig. 3: Comparison of approximation techniques.

tainments for the approximated source error (degrees) without
refinement are plotted against the number of log-likelihood
computations required by values of ns for each technique.
For this plot, no subsequent refinement is performed, and nr

is fixed at 30 000. 68% containments for each ns were obtained
from 1000 trials over each simulated GRB.
Stage 3: Iterative Source Refinement. The approximation
result is subsequently refined using a modified version of the
iterative linear least-squares approach in [24], [25] over all
reconstructed data. Refinement executes for x iterations (or
until convergence). Whereas our prior work fixed x=20, now
we allow the task to adapt by compressing x to a discrete
numeric value in the range {0. . .20}. Iterative refinement can
be terminated at any time, with the result of the last com-
pleted iteration (or the initial approximation, if no iterations
completed) used as the estimated source direction of the GRB.

Iterative refinement is highly dependent on the quality of
the initial source estimate provided by approximation, as
illustrated in Fig. 4. Each value of (ns, x) is plotted against
the 68% containment of localization error (degrees) over 1000
trials from our 10 synthetic GRBs with nr=1893 (the smallest

Fig. 4: Impact of approximation on iterative refinement.

value in our geometric progression for which ns can reach
1000) and using the ApproxCircles technique. With fewer
annuli sampled for approximation, more refinement iterations
are necessary to converge on an accurate result. With more
refinement iterations, the impact of a poor initial estimate is
reduced.

VII. RESPONSE TIMES

Each of APT’s three stages of CPU computation (illustrated
in Fig. 1) has an initialization subtask preceding a parallel sub-
task, with the work evenly split across cores using OpenMP.
We measure execution times for each subtask, then use these
to calculate response times for each stage as functions of the
tunable parameters.

Reconstruction processes events independently, with its
workload linear in nr after a constant-time initialization. To
characterize response time, we fit a linear function on the three
hardware platforms listed in Table II, all with CPU throttling
disabled, running the pipeline at the highest real-time priority.
These platforms span a range of performance in available
SWaP-constrained hardware while remaining tolerant to harsh
environmental conditions. Though not rad-hardened, they are
candidates to fly aboard a scheduled Antarctic high-altitude
balloon demonstration mission, and our group has flown the
Atom-based platform on previous such missions.

On each platform, we profile the reconstruction stage for
values of nr from 3000 to 27 000 in steps of 3000. For each
value, we collect 20 response times from each of our 10
simulated GRBs. To better capture the worst case, we collect
200 times from each GRB for nr=30 000. We fit a linear
function over the maximum times for each nr, then offset by
the greatest positive residual to guarantee the function upper-
bounds all 3200 observed response times. Measured worst-
case times and characteristic functions are illustrated in Fig. 5.
Note that on the Atom, the extra samples for nr=30 000
produced a slight outlier in measured WCET, indicating that
the platform’s timing is slightly less stable than the RPi3 or
RPi4. Nonetheless, with our offsetting technique we were still
able to meet all deadlines considered in Sec. IX.

Approximation initializes with results from reconstruction
then samples annuli at random, with which it computes joint
log-likelihoods for each of its candidate source directions.
Aggregation and sampling are performed by a single subtask

0 5 10 15 20 25 30

Thousands of Events Reconstructed

0

0.5

1

1.5

2

2.5

R
e
s
p
o
n
s
e
 T

im
e
 (

m
ic

ro
s
e
c
o
n
d
s
)

105

Rpi3

R
r
 = 8.22n

r
 + 891

Rpi4

R
r
 = 3.55n

r
 + 2.68e+03

Atom

R
r
 = 3.06n

r
 + 7.33e+03

Fig. 5: Reconstruction stage worst-case response times.

7

Platform Abbr. CPU Cores Freq. RAM Linux Kernel
Raspberry Pi 3 Model B+ RPi3 Cortex-A53 (ARMv8) 4 700MHz∗ 1GB 5.15.61
Raspberry Pi 4 Model B RPi4 Cortex-A72 (ARMv8) 4 600MHz∗ 4GB 5.15.61

WINSYSTEMS EBC-C413 Atom Intel Atom E3845 4 1.92GHz 8GB 5.15.0

TABLE II: Hardware platforms evaluated. ∗While the Raspberry Pi models tested support higher CPU clock
speeds, we use the lower frequencies recommended in [41], [42] to prevent throttling and instability.

0 100 200 300 400 500 600 700 800 900 1000

Annuli Sampled

0

2

4

6

8

10

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

105

Rpi3

R
a
 = 823n

s
 + 1e+04

Rpi4

R
a
 = 362n

s
 + 4.87e+03

Atom

R
a
 = 186n

s
 + 6.72e+03

(a) ApproxCircles

0 100 200 300 400 500 600 700 800 900 1000

Annuli Sampled

1000

2000

3000

4000

5000

6000

7000

8000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Rpi3

R
f
 = 5.49n

s
 + 2.1e+03

Rpi4

R
f
 = 3.48n

s
 + 2.57e+03

Atom

R
f
 = 1.82n

s
 + 1.44e+03

(b) FibSpiral
Fig. 6: Approximation stage worst-case response times.

that precedes an independent subtask for each candidate source
direction (100 for FibSpiral and 14 400 for ApproxCircles).
A final subtask aggregates the results to find an average source
vector, weighted by the joint log-likelihoods. Execution times
for each subtask scale linearly with the number of sampled
annuli ns. We characterize the worst-case response time sepa-
rately for each technique α. We profile both approximation
techniques for ns ∈ {200, 400, 600, 800, 1000}. For each
value, we collect 20 response times from each of 10 simulated
GRBs. Similar to reconstruction profiling, we fit a linear func-
tion over the maximum times for each ns, then shift vertically
to guarantee an upper bound over all observed response times.
The measured worst-case times and corresponding functions
are illustrated in Figures 6(a) and 6(b). Notice that the vertical
axis scale for ApproxCircles is 2 orders of magnitude greater
than for FibSpiral, commensurate with the number of log-
likelihood computations required by each technique.

Finally, Refinement is iterative; each iteration has a se-
quential initialization subtask followed by a parallel subtask to
process and filter each annulus. A final sequential subtask in
each iteration constructs and solves a constant-time quadratic

0 5 10 15 20 25 30

Thousands of Events Reconstructed

0

5000

10000

15000

R
e

s
p

o
n

s
e

 T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Rpi3

R
i
 = 5.45e-06n

r

2
 + 0.171n

r
 + 4.25e+03

Rpi4

R
i
 = 3e-06n

r

2
 + 0.0504n

r
 + 2.56e+03

Atom

R
i
 = 7.61e-07n

r

2
 + 0.0407n

r
 + 577

Fig. 7: Refinement stage worst-case response times.

eigenvalue problem, for which forming the matrix has cost
quadratic in the number of reconstructed annuli [6]. Each
iteration, then, has a worst-case response time quadratic in
nr; this is multiplied by x to produce the response time of
the stage. We fit this function on our three candidate devices,
profiling each iteration of refinement from the same set of runs
measured for reconstruction. Results are illustrated in Fig. 7.

VIII. IMPLEMENTATION

In this section, we discuss our implementation of workload
adaptation for APT’s GRB localization task.
Pareto-Optimal Surface. We quantified response times for
2657 input parameter states per the functions identified for
each stage in Sec. VII. After generating a Pareto-optimal set
of candidates (Sec. IV), only 81 states remained for the RPi3,
84 for the RPi4, and 83 for the Atom. We characterized
localization error for all values of α and x for each tested
value of nr and ns, removing the option of interpolation over
these discrete states. For each candidate state s, we reduced
the hyperplanes connecting adjacent values of nr and ns to
log-linear functions of error in each of these parameters. As
the maximum value of nr is a dynamic constraint, we also
constructed log-linear functions from the points for which
nr=30 000 (the largest value tested) by extrapolation from
the state with the next smaller value of nr having a higher
measured error. Each candidate state and its log-linear function
parameters are stored in a lookup table to use online.
Determining Parameter Values. When a job arrives, the
localization task checks the worst-case response time for the
number of reconstructable events: if it exceeds the deadline,
parameter values are selected accordingly (Sec. IV).
Adapting to Overload. The number of events reconstructed
affects the response time of the downstream refinement stage,
so we do not treat reconstruction as an anytime workload.
Instead, once parameter values are selected, global variables
are set prior to computation to restrict the number of events re-
constructed, the number of annuli sampled for refinement, and

8

the number of refinement iterations to perform. The software
implements FibSpiral and ApproxCircles as C++ subclasses
of a common Approximation class, allowing dynamic object
construction according to the chosen value of α.

Slack Reclamation. When parameter values for an execution
mode guarantee completion before the deadline in the worst
case, pessimism in WCET estimates may result in overcom-
pression. Nonetheless, some tasks provide opportunities for
slack reclamation after computation completes. APT’s final
iterative source refinement is an anytime workload, so slack
could be reclaimed naı̈vely by allowing it to continue iterating
until the deadline. However, it might still complete early if
refinement converges, and this does not consider that earlier
stages of the pipeline may also have been compressed. Instead,
we implement a version of slack reclamation that determines,
given the remaining slack time (less its own overhead), how
many additional events can be reconstructed with another
refinement iteration run over the resulting larger set of annuli.
For efficiency, rather than allowing OpenMP to split events
among threads prior to reconstruction, an idle thread retrieves
an event using an atomic fetch-and-increment of an index that
tracks the next available event. Once this index reaches nr,
reconstruction halts, but is resumed when slack reclamation
increases the limit. Reclamation continues in a loop until there
is insufficient slack time remaining, as illustrated in Fig. 8. At
this point, additional iterations of refinement can still be run
until the deadline (or until convergence).

IX. EVALUATION

To evaluate our proposed workload compression approach,
we first measured the overheads associated with each optional
extension of the APT GRB localization application (inter-
polation/extrapolation and slack reclamation) to appropriately
account for them. We next compared these extensions when
running the pipeline against our synthetic GRBs to decide
which are expected to further improve results against real-
world data. Finally, we evaluated our approach in the context
of historical GRBs to demonstrate that our approach extends
from training to real-world tests, enabling localization of bright
GRBs even under highly constrained deadlines.

A. Overheads

To evaluate our proposed workload compression approach,
we applied it to the APT localization task. We began with
profiling the overhead of searching online for a Pareto-optimal
set of compressed input parameters (described in Sec. IV)
and of computing the inputs to slack reclamation (Sec. VIII).
We ran the localization task with both compression and slack

Reconstruct Iterative
Refinement

Approx
SourceCompress

Slack? Produce
Result

Reconstruct Refinement
Iteration

No
Yes

Fig. 8: Localization pipeline with compression and slack reclamation.

reclamation over the synthetic GRBs described in Sec. V. For
each GRB, we tested numbers of input gamma-ray photons
over a geometric progression of 9 values from 30 to 106.
Geometric progressions of 9 deadline values were selected
separately for each hardware platform to guarantee that the
shortest deadline would be between the response times of the
first two candidate states, and that the longest deadline would
be greater than the response time of the last candidate state.

Fig. 9 illustrates the overheads of the 810 profiled runs of
online compression for each tested hardware platform, with the
vertical bars enclosing the distribution. The overhead remained
under 220 µs on the RPi3, under 180 µs on the RPi4, and
under 60 µs on the Atom, demonstrating the efficiency of our
online compression technique. We adjusted the response time
functions for each of our platforms accordingly.

Overheads of slack reclamation were captured by profiling
the elapsed time of the first successful attempt to reclaim
slack for each run. Those runs for which slack could not
be reclaimed were ignored, as the overhead may be lower
in these cases. This produced 538 samples for the RPi3, 555
for the RPi4, and 573 for the Atom; these are also illustrated
in Fig. 9. Despite the equivalent program logic, the RPi3 had
significantly higher overhead (notice the difference in vertical-
axis units): its overhead reached 97.5 µs, whereas it remained
under 1.9 µs on both the RPi4 and Atom.

B. Evaluation on Synthetic GRBs

To characterize the expected performance of our approach,
we evaluated three versions when applied to APT’s local-
ization task. The first, Pareto, finds the best state from the
Pareto-optimal set of candidates with a response time that
does not exceed the deadline and for which nr≤ne according
to the procedure in Sec. IV. The second, IntExt, addition-
ally interpolates or extrapolates from that state. The third,
Reclaim, performs compression equivalently to IntExt while
also attempting to reclaim available slack time after the task
completes according to the procedure in Sec. VIII.

We ran each version over each of our 10 synthetic GRBs,
using subsets of the generated gamma rays with sizes 10N

for N from 2 to 6. For each of the resulting 50 subsets,
we evaluated the pipeline with a sufficiently large deadline to
guarantee an uncompressed state, then imposed deadlines of

Fig. 9: Measured overhead times.

9

GRB Catalog # Duration (s) α Epeak(keV) β Fluence (MeV/cmˆ2) # Gamma Rays θ ϕ

80905499 0.704 0.66 284.6 -2.15 0.918 299 288 33.244 120.90
81209981 0.320 -0.67 1057.0 -2.25 2.452 818 489 40.576 43.60
90227772 0.704 0.48 2013.0 -3.15 20.272 1 772 628 16.766 37.64
90429753 0.832 -0.28 178.3 -1.65 2.643 803 322 31.572 214.17

TABLE III: Simulated short GRBs with parameters matching corresponding catalog entries in [36].

10, 33, 100, 330, and 1000 ms,2 for a total of 300 sets of inputs
to the pipeline. For each set of inputs, we ran Pareto and
IntExt once and ran Reclaim 5 times to account for variations
in remaining slack time. We observed that over 1750 deadline-
constrained runs on each of our three hardware platforms, no
instance of the task missed its deadline.

To predict which approach is most likely to perform best
on real-world datasets, we compared each approach pairwise
with the other two. We define better utility as exceeding a
10% reduction in localization error; we use this threshold to
characterize the difference because even a small change in
input can result in significantly different results, as reflected
by the wide distributions illustrated in Fig. 2. Results for all
1500 runs of Reclaim and 300 runs of IntExt and Pareto are
illustrated in Fig. 10. We note that a pairwise comparison pro-
vides more detail than enumerating the times each approach is
the best of the three, which would not capture situations where
two methods dominate the third, but not each other. We also
observe that slack reclamation occasionally degrades results,
as the additional input events selected might be incorrectly
reconstructed or reflect noisy measurements. Nonetheless, the
results suggest additional interpolation or extrapolation from
an initial candidate state, and reclaiming slack at the end of
execution, are expected to improve outcomes most of the time.

C. Evaluation on Short GRBs Observed by Fermi GBM

To characterize how well our approach extends from syn-
thetic training data to real-world workloads, we simulated four
additional GRBs sourced from the Fermi GBM catalogs. We
used the data in [36], which fits spectral-energy distributions
to GRBs observed by the GBM. We searched for short GRBs
(duration <1s) fit to a Band function; four matched these

2The shortest-duration burst captured by GBM was around 10 ms [29]–[32].

RPi3 RPi4 Atom
0

10

20

30

40

50

60

70

80

IntExt Outperforms Pareto

Pareto Outperforms IntExt

RPi3 RPi4 Atom
0

100

200

300

400

500

600

Reclaim Outperforms IntExt

IntExt Outperforms Reclaim

RPi3 RPi4 Atom
0

100

200

300

400

500

600

Reclaim Outperforms Pareto

Pareto Outperforms Reclaim

Fig. 10: Pairwise comparison of approach versions for synthetic GRBs.

criteria. Simulation parameters are listed in Table III. We
randomly generated source directions by sampling the polar
angle uniformly from 0−60◦ and the azimuth from 0−360◦.
Worst-case response times on each platform to perform un-
compressed localization of each GRB are listed in Table IV.

Device 80905499 81209981 90227772 90429753
RPi3 1087 1379 5813 1177
RPi4 490 618 2808 529
Atom 265 346 1268 291

TABLE IV: Worst-case response times (ms) for uncompressed localization.

We ran each version of our pipeline for each new GRB.
We used a sufficiently large deadline to guarantee an uncom-
pressed state, then imposed a deadline equal to the burst’s
duration, and finally iterated over the same deadlines evaluated
for our synthetic GRBs (10, 33, 100, 330, and 1000 ms). For
each deadline, we ran each version of the pipeline 20 times
over each GRB. We then found the 68% containment of error
in source direction for each set of 20 results. None of the
1440 deadline-constrained runs on each of our three hardware
platforms missed its deadline.

Similarly to the analysis for the synthetic GRBs, we com-
pared Pareto, IntExt, and Reclaim pairwise with the other
two, enumerating how often each outperformed the others.
Results are illustrated in Fig. 11. Counts are out of 28. The
results validate our predictions from the initial analysis of
synthetic GRBs: interpolation and extrapolation from an initial
Pareto-optimal state, then reclaiming slack time at the end of
the pipeline, both typically improve localization accuracy.

In Fig. 12, we provide a plot for each simulated GRB of
the 68% containment of source direction error in degrees over
the 20 iterations of Reclaim for each imposed deadline. We
observe that, with compression, the APT localization task is
often able to produce results close in accuracy to those of
its uncompressed state for deadlines of around 100 ms, even

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

IntExt Outperforms Pareto

Pareto Outperforms IntExt

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

Reclaim Outperforms IntExt

IntExt Outperforms Reclaim

RPi3 RPi4 Atom
0

2

4

6

8

10

12

14

16

Reclaim Outperforms Pareto

Pareto Outperforms Reclaim

Fig. 11: Pairwise comparison of approach versions for cataloged GRBs.

10

with worst-case uncompressed response times approaching 6
seconds on the platforms tested. While we allow for fur-
ther compression to guarantee schedulability in response to
dynamic workloads and deadlines, our approach also allows
us to characterize a minimum acceptable deadline for each
hardware platform. For deadlines as short as 33 ms, it is
often successful in providing sub-degree accuracy, sufficient
for follow-up observations by optical telescopes. However,
as the imposed deadline deadline increases, localization error
typically decreases, yielding greater utility. Nonetheless, this
is not always the case: because of the high variance in
localization accuracy, and because larger values of nr might
cause noisy or incorrectly reconstructed events to be selected,
occasionally larger deadlines correspond to lower accuracy.

X. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a technique for compressing the
workloads of highly parallel fork-join tasks executing on a
fixed number of processors to remain schedulable in the face
of dynamic workloads and deadlines. By identifying multiple
discrete numeric, continuous numeric, and categorical param-
eters over which subtask workloads can be compressed, and
through offline characterization of their effects on result utility
and response times, a Pareto-optimal surface can be generated
to enable efficient online compression that guarantees schedu-
lability while minimizing the resulting loss. We also identified
methods to reduce pessimism by reclaiming available slack
if execution completes early. We demonstrated that, when
applied in the context of real-time GRB localization aboard
the planned APT satellite mission, our approach provided sub-
degree estimates of source direction even for ≈33 ms deadlines
imposed by bright, transient bursts.

Nonetheless, APT and other space-based missions may
present additional challenges that motivate further exploration.
The real-time properties of GRB localization might be better
expressed with time utility functions, rather than a hard
deadline: narrow observation windows may impose a tradeoff
favoring earlier, but potentially less accurate, alerts [7]. Ad-
ditionally, the GRB localization pipeline may run on shared
hardware with mission-critical instrument control tasks (e.g.,
that regulate power or cool the instrument). Alternative analyt-
ical frameworks, such as semi-federated [43] or reservation-
based federated [44] might allow these techniques to be ex-
tended to general parallel DAG tasks that share cores with low-
utilization workloads. Additionally, further work is needed to
efficiently guarantee a Pareto-optimal solution even when the
Pareto-optimal surface does not intersect the region described
by the dynamic constraints for a given job. This work serves as
a prerequisite toward a utility-driven elastic scheduling model
over multiple tasks that share a limited set of resources.

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB80905499

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB81209981

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB90227772

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB90429753

(a) RPi3

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB80905499

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB81209981

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB90227772

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB90429753

(b) RPi4

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB80905499

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB81209981

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB90227772

10
1

10
2

10
3

Deadline (ms)

10
-2

10
0

6
8

%
 C

o
n

ta
in

m
e

n
t

E
rr

o
r

GRB90429753

(c) Atom

Fig. 12: 68% containment of error in source direction using Reclaim.
Horizontal lines indicate 68% containment for uncompressed execution.

11

REFERENCES

[1] W. Kywe, D. Fujiwara, and K. Murakami, “Scheduling of image
processing using anytime algorithm for real-time system,” in Proc. of
18th Int’l Conf. on Pattern Recognition, vol. 3, 2006, pp. 1095–1098.

[2] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proceedings of the IEEE, vol. 82, no. 1, pp. 83–94, 1994.

[3] A. Soyyigit, S. Yao, and H. Yun, “Anytime-Lidar: Deadline-aware
3D object detection,” in Proc. of IEEE 28th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2022, pp. 31–40.

[4] J. Leonard and H. Durrant-Whyte, “Simultaneous map building and
localization for an autonomous mobile robot,” in Proc. of IEEE/RSJ Int’l
Wkshp. on Intelligent Robots and Systems, vol. 3, 1991, pp. 1442–1447.

[5] A. Li, H. Liu, J. Wang, and N. Zhang, “From timing variations
to performance degradation: Understanding and mitigating the impact
of software execution timing in SLAM,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2022.

[6] J. Buckley et al., “The Advanced Particle-astrophysics Telescope (APT)
Project Status,” in Proc. of 37th International Cosmic Ray Conference
— PoS(ICRC2021), vol. 395, Jul. 2021, pp. 655:1–655:9.

[7] M. Sudvarg, J. Buhler, R. Chamberlain, C. Gill, and J. Buckley, “Work
in Progress: Real-Time GRB Localization for the Advanced Particle-
astrophysics Telescope,” in Proc. of 15th Wkshp. on Operating Systems
Platforms for Embedded Real-Time Applications, Jul. 2022, pp. 57–61.

[8] G. C. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in Proc. of IEEE Real-Time Systems Symposium, 1998.

[9] G. C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni, “Elastic
scheduling for flexible workload management,” IEEE Transactions on
Computers, vol. 51, no. 3, pp. 289–302, Mar. 2002.

[10] T. Chantem, X. S. Hu, and M. D. Lemmon, “Generalized elastic schedul-
ing,” in Proc. of IEEE International Real-Time Systems Symposium,
2006, pp. 236–245.

[11] ——, “Generalized elastic scheduling for real-time tasks,” IEEE Trans-
actions on Computers, vol. 58, no. 4, pp. 480–495, Apr. 2009.

[12] J. Orr and S. Baruah, “Multiprocessor scheduling of elastic tasks,” in
Proc. of 27th International Conference on Real-Time Networks and
Systems. ACM, 2019, pp. 133–142.

[13] J. Orr, C. Gill, K. Agrawal, J. Li, and S. Baruah, “Elastic scheduling for
parallel real-time systems,” Leibniz Transactions on Embedded Systems,
vol. 6, no. 1, p. 05:1–05:14, May 2019.

[14] J. Orr et al., “Elasticity of workloads and periods of parallel real-time
tasks,” in Proc. of 26th International Conference on Real-Time Networks
and Systems. ACM, 2018, pp. 61–71.

[15] J. Orr, J. C. Uribe, C. Gill, S. Baruah et al., “Elastic scheduling of
parallel real-time tasks with discrete utilizations,” in Proc. of 28th
International Conference on Real-Time Networks and Systems. ACM,
2020, pp. 117–127.

[16] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in Proc.
of 26th Euromicro Conference on Real-Time Systems, 2014, pp. 85–96.

[17] Y. Bai, L. Li, Z. Wang, X. Wang, and J. Wang, “Performance opti-
mization of autonomous driving control under end-to-end deadlines,”
Real-Time Systems, vol. 58, no. 4, pp. 509–547, Dec 2022.

[18] J. Real and A. Crespo, “Mode change protocols for real-time systems:
A survey and a new proposal,” Real-Time Systems, vol. 26, no. 2, pp.
161–197, 3 2004.

[19] A. Block, B. Brandenburg, J. H. Anderson, and S. Quint, “An adaptive
framework for multiprocessor real-time systems,” in Proc. of Euromicro
Conference on Real-Time Systems, 2008, pp. 23–33.

[20] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“PointPillars: Fast encoders for object detection from point clouds,”
in Proc. of IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2019, pp. 12 689–12 697.

[21] I. Gog, S. Kalra, P. Schafhalter, J. E. Gonzalez, and I. Stoica, “D3: A
dynamic deadline-driven approach for building autonomous vehicles,” in
Proc. of 17th European Conf. on Computer Systems, 2022, p. 453–471.

[22] M. Stigge, P. Ekberg, and W. Yi, “The fork-join real-time task model,”
SIGBED Rev., vol. 10, no. 2, p. 20, Jul. 2013.

[23] Q. Wang and G. Parmer, “FJOS: Practical, predictable, and efficient
system support for fork/join parallelism,” in Proc. of 19th Real-Time
and Embedded Technology and Applications Symp., 2014, pp. 25–36.

[24] M. Sudvarg, J. Buhler, J. H. Buckley, W. Chen et al., “A Fast GRB
Source Localization Pipeline for the Advanced Particle-astrophysics
Telescope,” in Proc. of 37th International Cosmic Ray Conference —
PoS(ICRC2021), vol. 395, Jul. 2021, pp. 588:1–588:9.

[25] J. Wheelock, W. Kanu, M. Sudvarg et al., “Supporting multi-messenger
astrophysics with fast gamma-ray burst localization,” in Proc. of
IEEE/ACM HPC for Urgent Decision Making Workshop, Nov. 2021.

[26] I. Bartos and M. Kowalski, Multimessenger Astronomy, ser. 2399-2891.
IOP Publishing, 2017.

[27] A. Neronov, “Introduction to multi-messenger astronomy,” in Journal of
Physics: Conference Series, vol. 1263, no. 1. IOP Publishing, 2019.

[28] P. Mészáros, D. B. Fox, C. Hanna, and K. Murase, “Multi-messenger
astrophysics,” Nature Reviews Physics, vol. 1, no. 10, pp. 585–599, 2019.

[29] D. Gruber, A. Goldstein, V. W. von Ahlefeld et al., “The Fermi GBM
gamma-ray burst spectral catalog: Four years of data,” The Astrophysical
Journal Supplement Series, vol. 211, no. 1, p. 12, Feb. 2014.

[30] A. von Kienlin, C. A. Meegan, W. S. Paciesas et al., “The second Fermi
GBM gamma-ray burst catalog: The first four years,” The Astrophysical
Journal Supplement Series, vol. 211, no. 1, p. 13, Feb. 2014.

[31] P. N. Bhat, C. A. Meegan, A. von Kienlin et al., “The third Fermi GBM
gamma-ray burst catalog: The first six years,” The Astrophysical Journal
Supplement Series, vol. 223, no. 2, p. 28, Apr. 2016.

[32] A. von Kienlin, C. A. Meegan, W. S. Paciesas et al., “The fourth Fermi-
GBM gamma-ray burst catalog: A decade of data,” The Astrophysical
Journal, vol. 893, no. 1, p. 46, Apr. 2020.

[33] P. W. A. Roming, T. E. Kennedy, K. O. Mason et al., “The Swift ultra-
violet/optical telescope,” Space Science Reviews, vol. 120, no. 3, pp.
95–142, Oct. 2005.

[34] W. Chen, J. Buckley, S. Alnussirat et al., “The Advanced Particle-
astrophysics Telescope: Simulation of the Instrument Performance for
Gamma-Ray Detection,” in Proc. of 37th Int’l Cosmic Ray Conference
— PoS(ICRC2021), vol. 395, 2021, pp. 590:1–590:9.

[35] S. Agostinelli, J. Allison, K. Amako et al., “Geant4 — a simulation
toolkit,” Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 506, no. 3, pp. 250–303, 2003.

[36] L. Nava, G. Ghirlanda, G. Ghisellini, and A. Celotti, “Spectral properties
of 438 GRBs detected by Fermi GBM,” Astronomy & Astrophysics, vol.
530, p. A21, Apr. 2011.

[37] D. Band et al., “BATSE observations of gamma-ray burst spectra. I.
spectral diversity,” Astrophys. J., vol. 413, p. 281, Aug. 1993.

[38] “Overview of the Fermi GBM,” https://fermi.gsfc.nasa.gov/ssc/
data/analysis/documentation/Cicerone/Cicerone Introduction/GBM
overview.html, National Aeronautics and Space Administration
Goddard Space Flight Center, Jan. 2020, curated by J.D. Meyers.
Accessed: 26 Oct, 2022.

[39] S. Boggs and P. Jean, “Event reconstruction in high resolution Compton
telescopes,” Astronomy and Astrophys. Supp. Series, vol. 145, no. 2, pp.
311–321, 2000.

[40] V. Connaughton et al., “Localization of gamma-ray bursts using the
Fermi gamma-ray burst monitor,” The Astrophysical Journal Supplement
Series, vol. 216, no. 2, p. 32, Feb. 2015.

[41] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic latency management for ROS 2: Benefits, challenges, and
open problems,” in Proc. of IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021, pp. 264–277.

[42] M. Sudvarg and C. Gill, “A concurrency framework for priority-aware
intercomponent requests in CAmkES on seL4,” in Proc. of IEEE
28th International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2022, pp. 1–10.

[43] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling of
parallel real-time tasks on multiprocessors,” in Proc. of IEEE Real-Time
Systems Symposium (RTSS), 2017, pp. 80–91.

[44] N. Ueter et al., “Reservation-based federated scheduling for parallel real-
time tasks,” in Proc. of IEEE Real-Time Systems Symposium (RTSS),
2018, pp. 482–494.

https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/GBM_overview.html
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/GBM_overview.html
https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_Introduction/GBM_overview.html

	Introduction
	Background and Related Work
	Problem Statement
	Solution Overview
	Target Application: GRB Localization
	Parameters and Loss Function
	Response Times
	Implementation
	Evaluation
	Overheads
	Evaluation on Synthetic GRBs
	Evaluation on Short GRBs Observed by Fermi GBM

	Conclusions and Future Work
	References

