
References

1 3

Performance Enhancement of
First COSI Data Challenge

Jamie Shin (jamie.s@wustl.edu), Jeremy Buhler, Marion Sudvarg,

on behalf of the APT Collaboration

Introduction
COSI, the Compton Spectrometer and Imager [1], is a planned 0.2-0.5 MeV Compton telescope.
Upon its launch in 2027, COSI will study gamma-ray sources within and beyond the Milky Way.
The 2023 COSI Data Challenge (DC1) [2] asks the astrophysics community to image weak and
diffuse sources, such as the Crab Nebula and the galactic plane, using gamma-ray data collected
during a 2016 balloon flight.

DC1 exhibits many similarities to imaging computations that we expect to arise from our group’s
planned Advanced Particle-astrophysics Telescope (APT) and its balloon-borne Antarctic
demonstrator (ADAPT) [see poster #255]. When we performed the DC1 imaging computations
with the (mainly Python) code provided by COSI, we found that they required hours of
computing time even on a large multicore server. We therefore sought to reduce the cost of
these computations through parallelism and refactoring, while remaining in Python to retain the
DC’s ability to engage the broader astrophysics community as originally intended.

Acceleration Strategies
1. JIT Compilation

• Numba library [3] can just-in-time compile NumPy code to faster native code

• Can easily parallelize across multiple CPU cores with “prange” construct

• For best performance, must rewrite vectorized operations as nested loops

• Observed 40-60x speedup (on 8 CPU cores) vs. original code for convolution kernels

Results1

2

4 Conclusion & Future Work

3

Key Computational Bottlenecks in DC1 R-L Code

DC1 Image Reconstruction
• Data 𝑫: gamma-ray counts observed over time, binned

according to properties of their Compton rings

• Response 𝑹: simulated detector response to gamma rays
from different directions in sky

• Goal: estimate source image 𝑺 and background 𝑩 (all light

not from source) that best explain data 𝑫 as 𝑅 ⊗ 𝑆 + 𝐵.

• Uses Richardson-Lucy (R-L) iterative deconvolution [5,6]

Reconstructed image of Al26
emissions from galactic plane,

computed with DC1 code

DC1 Imaging Task 511keV Al26 Point Sources

R-L Total Time 8h 30m 6h 16m 8h 22m

R-L Iterations 150 77 150

Time to complete DC1 R-L block on AMD EPYC 7551P, 256 GB DRAM, Python 3.8.10

(1) Two convolution kernels (written in Python)
Cost in 511keV task is ~140s per iteration

(2) Background fitting uses numerical max likelihood estimation
Calls external Stan C++ optimizer – ~60s per iteration

(3) Code is single-threaded, even on our 32-processor CPU

2. JAXopt for Maximum
Likelihood Estimation

• JAXopt optimizer backend [4]
both issues parallel function
evaluations and JIT-compiles
Python objective function

• Also achieves faster
convergence than Stan

• Requires side-effect-free
rewrite of objective function typical speedup vs. original: 12-60x (on 8 CPU cores)

3. Memory Reduction

• Simulated sky response matrix 𝑹 is used in every convolution operation

• Originally stored in double precision → 70-100 GB of memory needed

• Comparable results achieved with single precision → 50% memory savings

• (Now experimenting with half precision to target GPU implementation)

We tested three DC1 imaging tasks using our accelerated Python
implementation of R-L on 8 CPU cores. We measured speedups vs.
(unparallelized) DC1 original code, keeping number of R-L iterations the
same for each.

Average speedup for 3 DC1 imaging tasks: 60.1x

• Can achieve parallelism, large speedups on R-L imaging without leaving Python

• Convergence with R-L is tricky – faster code supports fine-tuning of approach

• To investigate: how will these techniques impact performance of Second COSI Data
Challenge (released 3/25/2024)?

• JAXopt transparently uses GPU, but convolutions need JIT compiler such as CuPy [7]

• Response matrix 𝑹 is tens of gigabytes in size; even at 16-bit precision, may not fit
on GPUs available to most researchers

• Ordering of response matrix dimensions impacts locality of GPU memory access

• Empirically, CuPy performance and memory usage is highly sensitive to exact vector
operations used to express convolutions; writing “raw” kernels may be preferable

0

10

20

30

40

50

60

70

511keV Al26 Point Sources

Sp
ee

d
u

p

For two of three tasks (511keV and Al26), switching to JAXopt-based optimizer
caused R-L to converge to essentially the same result as the original in many
fewer iterations, providing further 7-14x speedup.

Results after 11 R-L iterations – similar images, MAP
likelihoods to results after 150 iterations of

original DC1 R-L code

511keV Al26

R-L does not offer a good stopping criterion to terminate iteration. Continuing
to run further improves MAP likelihood but overfits background and removes
much of the actual source intensity. Finding a good stopping rule for image
deconvolution is left to future work.

[1] J. Tomsick, A. Zoglauer, C. Sleator, H. Lazar, et al. “The Compton Spectrometer and Imager.” Bulletin of the American
 Astronomical Society 51(7):98, 2019.
[2] C. Karwin, S. Boggs, J. Tomsick, A. Zoglauer, et al. “The COSI Data Challenges and Simulations.” Bulletin of the
 American Astronomical Society 54(3):2022n3i108p30, 2022.
[3] S. K. Lam, A. Pitrou, and S. Seibert. “Numba: a LLVM-based Python JIT Compiler.” Proc. 2nd Wkshp LLVM Compiler
 Infrastructure in HPC 7, New York, NY 2015.
[4] M. Blondel, Q. Berthet, M. Cuturi, R. Frostig, et al. “Efficient and Modular Implicit Differentiation.” Advances in
 Neural Information Processing Systems 35, 2022.
[5] W. H. Richardson. “Bayesian-based Iterative Method of Image Restoration.” J. Optical Society of America 672(1):55, 1972.
[6] L.B. Lucy. “An iterative technique for the rectification of observed distributions.” Astronomical J. 79(6):745-754, 1974.
[7] R. Okta, Y. unno, D. Nishino, H. Shohei, et al. “CuPy: a NumPy-Compatible Library for NVIDIA GPU Calculations.” Proc.
 Wkshp. Machine Learning Systems at NeurIPS 31, 2017.

Funded by NASA award 80NSSC21K1741
and NSF award CNS-1763503

Prospects for GPU Acceleration

	Slide 1

